Extending the Bernoulli-Euler method for finding zeros of holomorphic functions

被引:0
|
作者
Bernoussi, B
Rachidi, M
Saeki, O
机构
[1] Univ Abdelmalek Essaadi, ENSAT Tanger, Tanger, Morocco
[2] Univ Mohammed 5, Fac Sci, Dept Math & Informat, Rabat, Morocco
[3] Kyushu Univ, Fac Math, Hakozaki, Fukuoka 8128581, Japan
来源
FIBONACCI QUARTERLY | 2004年 / 42卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [21] CONSERVATION-LAWS FOR NONHOMOGENEOUS BERNOULLI-EULER BEAMS
    CHIEN, N
    HONEIN, T
    HERRMANN, G
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (23) : 3321 - 3335
  • [22] HIERARCHICAL BERNOULLI-EULER BEAM FINITE-ELEMENTS
    GANESAN, N
    ENGELS, RC
    COMPUTERS & STRUCTURES, 1992, 43 (02) : 297 - 304
  • [23] On Bending of Bernoulli-Euler Nanobeams for Nonlocal Composite Materials
    Feo, Luciano
    Penna, Rosa
    MODELLING AND SIMULATION IN ENGINEERING, 2016, 2016
  • [24] Localization in a Bernoulli-Euler Beam on an Inhomogeneous Elastic Foundation
    Indeitsev, D. A.
    Kuklin, T. S.
    Mochalova, Yu. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2015, 48 (01) : 41 - 48
  • [25] Combinatorics of multiboundary singularities Bnl and the Bernoulli-Euler numbers
    Karpenkov, ON
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (01) : 65 - 67
  • [26] Size effect of vibration characteristics of Bernoulli-Euler microbeam
    Zhou B.
    Wang Z.
    Zhao F.
    Zhou S.
    Xue S.
    Lin Y.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (01): : 151 - 157
  • [27] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    T. I. Zhdan
    Moscow University Mechanics Bulletin, 2019, 74 : 123 - 127
  • [28] Dissipative dynamics of geometrically nonlinear Bernoulli-Euler beams
    A. S. Desyatova
    M. V. Zhigalov
    V. A. Krys’ko
    O. A. Saltykova
    Mechanics of Solids, 2008, 43 : 948 - 956
  • [29] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    Zhdan, T. I.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2019, 74 (05) : 123 - 127
  • [30] Dissipative dynamics of geometrically nonlinear Bernoulli-Euler beams
    Desyatova, A. S.
    Zhigalov, M. V.
    Krys'ko, V. A.
    Saltykova, O. A.
    MECHANICS OF SOLIDS, 2008, 43 (06) : 948 - 956