Backward error analysis of Neville elimination

被引:26
|
作者
Alonso, P [1 ]
Gasca, M [1 ]
Pena, JM [1 ]
机构
[1] UNIV ZARAGOZA, DEPT MATEMAT APLICADA, ZARAGOZA, SPAIN
关键词
D O I
10.1016/S0168-9274(96)00051-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Neville elimination is a useful alternative to Gauss elimination in order to study many properties of totally positive matrices. In this paper we perform a backward error analysis of that elimination procedure. In the case of totally positive matrices, the error bounds are similar to those obtained previously by other authors for Gauss elimination. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [31] A THEORETICAL FRAMEWORK FOR BACKWARD ERROR ANALYSIS ON MANIFOLDS
    Hansen, Anders C.
    JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (01): : 81 - 111
  • [32] Weak backward error analysis for Langevin process
    Marie Kopec
    BIT Numerical Mathematics, 2015, 55 : 1057 - 1103
  • [33] Backward error analysis in computational geometry - Reply
    Kettner, L
    Mehlhorn, K
    Pion, S
    Schirra, S
    Yap, C
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 1, 2006, 3980 : 60 - 60
  • [34] BACKWARD ERROR ANALYSIS FOR VARIATIONAL DISCRETISATIONS OF PDES
    McLachlan, Robert, I
    Offen, Christian
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (03): : 447 - 471
  • [35] Backward error analysis of the Lanczos bidiagonalization with reorthogonalization
    Li, Haibo
    Tan, Guangming
    Zhao, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
  • [36] Automated Backward Error Analysis for Numerical Code
    Fu, Zhoulai
    Bai, Zhaojun
    Su, Zhendong
    ACM SIGPLAN NOTICES, 2015, 50 (10) : 639 - 654
  • [37] A MATRICIAL DESCRIPTION OF NEVILLE ELIMINATION WITH APPLICATIONS TO TOTAL POSITIVITY
    GASCA, M
    PENA, JM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 : 33 - 53
  • [38] Growth factors of pivoting strategies associated with Neville elimination
    Alonso, Pedro
    Delgado, Jorge
    Gallego, Rafael
    Manuel Pena, Juan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (07) : 1755 - 1762
  • [39] A PLU-factorization of rectangular matrices by the Neville elimination
    Gassó, M
    Torregrosa, JR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 (1-3) : 163 - 171
  • [40] A note on matrices with maximal growth factor for Neville elimination
    Alonso, Pedro
    Delgado, Jorge
    Gallego, Rafael
    Manuel Pena, Juan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (12) : 2971 - 2974