Backward error analysis of Neville elimination

被引:26
|
作者
Alonso, P [1 ]
Gasca, M [1 ]
Pena, JM [1 ]
机构
[1] UNIV ZARAGOZA, DEPT MATEMAT APLICADA, ZARAGOZA, SPAIN
关键词
D O I
10.1016/S0168-9274(96)00051-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Neville elimination is a useful alternative to Gauss elimination in order to study many properties of totally positive matrices. In this paper we perform a backward error analysis of that elimination procedure. In the case of totally positive matrices, the error bounds are similar to those obtained previously by other authors for Gauss elimination. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [21] Block-striped partitioning and Neville elimination
    Alonso, P
    Cortina, R
    Ranilla, J
    EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 1073 - 1077
  • [22] Scalability of Neville elimination using checkerboard partitioning
    Alonso, P.
    Cortina, R.
    Diaz, I.
    Ranilla, J.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (3-4) : 309 - 317
  • [23] A further analysis of backward error in polynomial deflation
    Wang, Min
    Su, Yangfeng
    BIT NUMERICAL MATHEMATICS, 2019, 59 (01) : 271 - 297
  • [24] Backward error analysis for the linear programming problem
    Darracq-Calmettes, MC
    Dedieu, JP
    OPTIMIZATION, 2002, 51 (01) : 1 - 10
  • [25] BACKWARD ERROR ANALYSIS FOR A POLE ASSIGNMENT ALGORITHM
    COX, CL
    MOSS, WF
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (04) : 446 - 456
  • [26] Error analysis for the lidar backward inversion algorithm
    Rocadenbosch, F
    Comerón, A
    APPLIED OPTICS, 1999, 38 (21) : 4461 - 4474
  • [27] Backward error analysis for conjugate symplectic methods
    McLachlan, Robert I.
    Offen, Christian
    JOURNAL OF GEOMETRIC MECHANICS, 2023, 15 (01): : 98 - 115
  • [28] Weak backward error analysis for Langevin process
    Kopec, Marie
    BIT NUMERICAL MATHEMATICS, 2015, 55 (04) : 1057 - 1103
  • [29] ASPECTS OF BACKWARD ERROR ANALYSIS OF NUMERICAL ODES
    EIROLA, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 45 (1-2) : 65 - 73
  • [30] A further analysis of backward error in polynomial deflation
    Min Wang
    Yangfeng Su
    BIT Numerical Mathematics, 2019, 59 : 271 - 297