Inclusive Distance Antimagic Graphs

被引:1
|
作者
Dafik [1 ,2 ]
Alfarisi, R. [1 ,4 ]
Prihandini, R. M. [1 ,4 ]
Adawiyah, R. [1 ,2 ]
Agustin, I. H. [1 ,3 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Math Educ Dept, Jember, Indonesia
[3] Univ Jember, Dept Math, Jember, Indonesia
[4] Univ Jember, Elementary Sch Teacher Educ, Jember, Indonesia
关键词
D O I
10.1063/1.5054487
中图分类号
O59 [应用物理学];
学科分类号
摘要
Let G be a nontrivial and connected graph of order n. Define a bijection function g : V(G) -> {1, 2,..., n}. For any vertex v is an element of V(G), the neighbor sum g(v) + Sigma(u is an element of N(gamma))g(u) is a called the weight of the vertices v, denoted by w(v). If w(x) not equal w(y) for any two distinct vertices x and y, then g is called an inclusive distance antimagic labeling. In this paper, we present several results on inclusive distance antimagic labeling of graphs namely joint product, friendship, complete graph, path graph, cyle graph, star graph, doubel star, broom and wheel graph.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On rainbow antimagic coloring of graphs
    Budi, H. S.
    Dafik
    Tirta, I. M.
    Agustin, I. H.
    Kristiana, A., I
    2ND INTERNATIONAL CONFERENCE ON PHYSICS AND MATHEMATICS FOR BIOLOGICAL SCIENCE (2ND ICOPAMBS) 2020, 2021, 1832
  • [42] Antimagic Labeling of Regular Graphs
    Chang, Feihuang
    Liang, Yu-Chang
    Pan, Zhishi
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2016, 82 (04) : 339 - 349
  • [43] A class of antimagic join graphs
    Tao Wang
    Ming Ju Liu
    De Ming Li
    Acta Mathematica Sinica, English Series, 2013, 29 : 1019 - 1026
  • [44] Edge-antimagic graphs
    Baca, M.
    Lin, Y.
    Miller, M.
    Youssef, M. Z.
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1232 - 1244
  • [45] A class of totally antimagic total graphs
    Ivanco, Jaroslav
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 170 - 182
  • [46] Antimagic labeling and canonical decomposition of graphs
    Barrus, Michael D.
    INFORMATION PROCESSING LETTERS, 2010, 110 (07) : 261 - 263
  • [47] Antimagic labeling of biregular bipartite graphs
    Yu, Xiaowei
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 47 - 59
  • [48] Antimagic labelling of vertex weighted graphs
    Wong, Tsai-Lien
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 348 - 359
  • [49] Shifted-Antimagic Labelings for Graphs
    Chang, Fei-Huang
    Chen, Hong-Bin
    Li, Wei-Tian
    Pan, Zhishi
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 1065 - 1082
  • [50] A New Class of Antimagic Join Graphs
    WANG Tao
    LI Deming
    Wuhan University Journal of Natural Sciences, 2014, 19 (02) : 153 - 155