Inclusive Distance Antimagic Graphs

被引:1
|
作者
Dafik [1 ,2 ]
Alfarisi, R. [1 ,4 ]
Prihandini, R. M. [1 ,4 ]
Adawiyah, R. [1 ,2 ]
Agustin, I. H. [1 ,3 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Math Educ Dept, Jember, Indonesia
[3] Univ Jember, Dept Math, Jember, Indonesia
[4] Univ Jember, Elementary Sch Teacher Educ, Jember, Indonesia
关键词
D O I
10.1063/1.5054487
中图分类号
O59 [应用物理学];
学科分类号
摘要
Let G be a nontrivial and connected graph of order n. Define a bijection function g : V(G) -> {1, 2,..., n}. For any vertex v is an element of V(G), the neighbor sum g(v) + Sigma(u is an element of N(gamma))g(u) is a called the weight of the vertices v, denoted by w(v). If w(x) not equal w(y) for any two distinct vertices x and y, then g is called an inclusive distance antimagic labeling. In this paper, we present several results on inclusive distance antimagic labeling of graphs namely joint product, friendship, complete graph, path graph, cyle graph, star graph, doubel star, broom and wheel graph.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [32] Regular Bipartite Graphs Are Antimagic
    Cranston, Daniel W.
    JOURNAL OF GRAPH THEORY, 2009, 60 (03) : 173 - 182
  • [33] A Class of Antimagic Join Graphs
    Tao WANG
    Ming Ju LIU
    De Ming LI
    Acta Mathematica Sinica,English Series, 2013, (05) : 1019 - 1026
  • [34] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [35] A Class of Antimagic Join Graphs
    Wang, Tao
    Liu, Ming Ju
    Li, De Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (05) : 1019 - 1026
  • [36] Antimagic Labeling of Cubic Graphs
    Liang, Yu-Chang
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 31 - 36
  • [37] Totally antimagic total graphs
    Baca, Martin
    Miller, Mirka
    Phanalasy, Oudone
    Ryan, Joe
    Semanicova-Fenovcikova, Andrea
    Sillasen, Anita Abildgaard
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 61 : 42 - 56
  • [38] Antimagic labeling for subdivisions of graphs
    Li, Wei-Tian
    DISCRETE APPLIED MATHEMATICS, 2025, 363 : 215 - 223
  • [39] Non-inclusive and inclusive distance irregularity strength for the join product of graphs
    Susanto, Faisal
    Wijaya, Kristiana
    Sudarsana, I. Wayan
    Slamin, Slamin
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 1 - 13
  • [40] Antimagic Graphs with Even Factors
    WANG Tao
    MIAO Wenjing
    LI Deming
    WuhanUniversityJournalofNaturalSciences, 2015, 20 (03) : 193 - 196