A note on uniquely 3-colourable planar graphs

被引:6
|
作者
Li, Zepeng [1 ]
Zhu, Enqiang [1 ]
Shao, Zehui [2 ,3 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Minist Educ,Inst Software, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Planar graph; unique colouring; uniquely 3-colourable planar graph; construction; SIZE;
D O I
10.1080/00207160.2016.1167196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is uniquely k-colourable if the chromatic number of G is k and G has only one k-colouring up to permutation of the colours. Aksionov [On uniquely 3-colorable planar graphs, Discrete Math. 20 (1977), pp. 209-216] conjectured that every uniquely 3-colourable planar graph with at least four vertices has two adjacent triangles. However, in the same year, Melnikov and Steinberg [L.S. Mel'nikov and R. Steinberg, One counter example for two conjectures on three coloring, Discrete Math. 20 (1977), pp. 203-206.] disproved the conjecture by constructing a counterexample. In this paper, we prove that if a uniquely 3-colourable planar graph G has at most 4 triangles then G has two adjacent triangles. Furthermore, for any k > 5, we construct a uniquely 3-colourable planar graph with k triangles and without adjacent triangles.
引用
收藏
页码:1028 / 1035
页数:8
相关论文
共 50 条
  • [41] On Uniquely k-List Colorable Planar Graphs, Graphs on Surfaces, and Regular Graphs
    M. Abdolmaleki
    J. P. Hutchinson
    S. Gh. Ilchi
    E. S. Mahmoodian
    N. Matsumoto
    M. A. Shabani
    Graphs and Combinatorics, 2018, 34 : 383 - 394
  • [42] On Uniquely k-List Colorable Planar Graphs, Graphs on Surfaces, and Regular Graphs
    Abdolmaleki, M.
    Hutchinson, J. P.
    Ilchi, S. Gh.
    Mahmoodian, E. S.
    Matsumoto, N.
    Shabani, M. A.
    GRAPHS AND COMBINATORICS, 2018, 34 (03) : 383 - 394
  • [43] Interval colourable orientations of graphs
    Borowiecka-Olszewska, Marta
    Drgas-Burchardt, Ewa
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [44] Uniquely D-colourable Digraphs with Large Girth
    Harutyunyan, Ararat
    Kayll, P. Mark
    Mohar, Bojan
    Rafferty, Liam
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (06): : 1310 - 1328
  • [45] A note on domination 3-edge-critical planar graphs
    Furuya, Michitaka
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 142 : 64 - 67
  • [46] A note on the not 3-choosability of some families of planar graphs
    Montassier, M
    INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 68 - 71
  • [47] A note on the acyclic 3-choosability of some planar graphs
    Hocquard, Herve
    Montassier, Mickael
    Raspaud, Andre
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (10) : 1104 - 1110
  • [48] The Complexity of 3-Colouring H-Colourable Graphs
    Krokhin, Andrei
    Oprsal, Jakub
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1227 - 1239
  • [49] ON UNIQUELY 3-COLORABLE GRAPHS
    CHAO, CY
    CHEN, ZB
    DISCRETE MATHEMATICS, 1993, 112 (1-3) : 21 - 27
  • [50] A NOTE ON PACKING PATHS IN PLANAR GRAPHS
    FRANK, A
    SZIGETI, Z
    MATHEMATICAL PROGRAMMING, 1995, 70 (02) : 201 - 209