A note on uniquely 3-colourable planar graphs

被引:6
|
作者
Li, Zepeng [1 ]
Zhu, Enqiang [1 ]
Shao, Zehui [2 ,3 ]
Xu, Jin [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Key Lab High Confidence Software Technol, Minist Educ,Inst Software, Beijing 100871, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Planar graph; unique colouring; uniquely 3-colourable planar graph; construction; SIZE;
D O I
10.1080/00207160.2016.1167196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is uniquely k-colourable if the chromatic number of G is k and G has only one k-colouring up to permutation of the colours. Aksionov [On uniquely 3-colorable planar graphs, Discrete Math. 20 (1977), pp. 209-216] conjectured that every uniquely 3-colourable planar graph with at least four vertices has two adjacent triangles. However, in the same year, Melnikov and Steinberg [L.S. Mel'nikov and R. Steinberg, One counter example for two conjectures on three coloring, Discrete Math. 20 (1977), pp. 203-206.] disproved the conjecture by constructing a counterexample. In this paper, we prove that if a uniquely 3-colourable planar graph G has at most 4 triangles then G has two adjacent triangles. Furthermore, for any k > 5, we construct a uniquely 3-colourable planar graph with k triangles and without adjacent triangles.
引用
收藏
页码:1028 / 1035
页数:8
相关论文
共 50 条
  • [31] Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs
    Filakovsky, Marek
    Nakajima, Tamio-Vesa
    Oprsal, Jakub
    Tasinato, Gianluca
    Wagner, Uli
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [32] A note on 3-choosability of planar graphs
    Wang, Yingqian
    Lu, Huajing
    Chen, Ming
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 206 - 211
  • [33] A NOTE ON PLANAR GRAPHS
    BROWN, DP
    BUDNER, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1965, 280 (03): : 222 - &
  • [34] A note on uniquely 10-colorable graphs
    Kriesell, Matthias
    JOURNAL OF GRAPH THEORY, 2021, 98 (01) : 24 - 26
  • [35] Size of edge-critical uniquely 3-colorable planar graphs
    Li, Zepeng
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1242 - 1250
  • [36] The size of edge-critical uniquely 3-colorable planar graphs
    Matsumoto, Naoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [37] A Note on 3-Distance Coloring of Planar Graphs
    Morteza Hasanvand
    Kenta Ozeki
    Bulletin of the Iranian Mathematical Society, 2024, 50
  • [38] Note on characterization of uniquely 3-list colorable complete multipartite graphs
    Zhao, Yongqiang
    He, Wenjie
    Shen, Yufa
    Wang, Yanning
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 278 - +
  • [39] A Note on 3-Distance Coloring of Planar Graphs
    Hasanvand, Morteza
    Ozeki, Kenta
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
  • [40] A note on 3-connected cubic planar graphs
    Lu, Xiaoyun
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 2054 - 2058