Unary finite automata vs. arithmetic progressions

被引:33
|
作者
To, Anthony Widjaja [1 ]
机构
[1] Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Formal languages; Unary languages; Arithmetic progressions; Algorithms;
D O I
10.1016/j.ipl.2009.06.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We point out a subtle error in the proof of Chrobak's theorem that every unary NFA can be represented as a union of arithmetic progressions that is at most quadratically large. We propose a correction for this and show how Martinez's polynomial time algorithm, which realizes Chrobak's theorem. can be made correct accordingly. We also show that Martinez's algorithm cannot be improved to have logarithmic space, unless L = NL. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1010 / 1014
页数:5
相关论文
共 50 条
  • [41] The lattice of arithmetic progressions
    Goh, Marcel K.
    Hamdan, Jad
    Saks, Jonah
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 357 - 374
  • [42] ON THE UNION OF ARITHMETIC PROGRESSIONS
    Gilboa, Shoni
    Pinchasi, Rom
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1062 - 1073
  • [43] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [44] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [45] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [46] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [47] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [48] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [49] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [50] On disjoint arithmetic progressions
    Chen, YG
    ACTA ARITHMETICA, 2005, 118 (02) : 143 - 148