Unary finite automata vs. arithmetic progressions

被引:33
|
作者
To, Anthony Widjaja [1 ]
机构
[1] Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Formal languages; Unary languages; Arithmetic progressions; Algorithms;
D O I
10.1016/j.ipl.2009.06.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We point out a subtle error in the proof of Chrobak's theorem that every unary NFA can be represented as a union of arithmetic progressions that is at most quadratically large. We propose a correction for this and show how Martinez's polynomial time algorithm, which realizes Chrobak's theorem. can be made correct accordingly. We also show that Martinez's algorithm cannot be improved to have logarithmic space, unless L = NL. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1010 / 1014
页数:5
相关论文
共 50 条
  • [1] FINITE AUTOMATA AND UNARY LANGUAGES
    CHROBAK, M
    THEORETICAL COMPUTER SCIENCE, 1986, 47 (02) : 149 - 158
  • [2] On arithmetic progressions in finite fields
    Lemos, Abilio
    Neumann, Victor G. L.
    Ribas, Savio
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (06) : 2323 - 2346
  • [3] On arithmetic progressions in finite fields
    Abílio Lemos
    Victor G. L. Neumann
    Sávio Ribas
    Designs, Codes and Cryptography, 2023, 91 : 2323 - 2346
  • [4] Arithmetic progressions in finite groups
    Tarnauceanu, Marius
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (05)
  • [5] FINITE SETS AND ARITHMETIC PROGRESSIONS
    HAMPTON, CR
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10): : 866 - 866
  • [6] ARITHMETIC AND FINITE AUTOMATA
    ALLOUCHE, JP
    ASTERISQUE, 1987, (147-48) : 13 - 26
  • [7] Finite and infinite arithmetic progressions in sumsets
    Szemeredi, E.
    Vu, V. H.
    ANNALS OF MATHEMATICS, 2006, 163 (01) : 1 - 35
  • [8] Unambiguous finite automata over a unary alphabet
    Okhotin, Alexander
    INFORMATION AND COMPUTATION, 2012, 212 : 15 - 36
  • [9] Complexity of Unary Exclusive Nondeterministic Finite Automata
    Kutrib, Martin
    Malcher, Andreas
    Wendlandt, Matthias
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (407):
  • [10] Unambiguous Finite Automata over a Unary Alphabet
    Okhotin, Alexander
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2010, 2010, 6281 : 556 - 567