Jordan σ-derivations of triangular algebras

被引:11
|
作者
Benkovic, Dominik [1 ]
机构
[1] Univ Maribor, FNM, Dept Math & Comp Sci, SLO-2000 Maribor, Slovenia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 02期
关键词
Jordan sigma-derivation; sigma-derivation; derivation; triangular algebra; MATRIX-RINGS; AUTOMORPHISMS;
D O I
10.1080/03081087.2015.1027646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of describing the form Jordan sigma-derivations of a triangular algebra A. The main result states that every Jordan sigma-derivation Delta of A is of the form Delta = d + delta, where d is a sigma-derivation of A and delta is a special mapping of A. We search for sufficient conditions on a triangular algebra, such that delta = 0. In particular, any Jordan sigma-derivation of a nest algebra T (N) is a sigma-derivation and any Jordan sigma-derivation of an upper triangular matrix algebra T-n (A), where A is a commutative unital algebra, is a sigma-derivation.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [31] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Ferreira, Bruno L. M.
    Fosner, Ajda
    Moraes, Gabriela C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2779 - 2788
  • [32] Lie derivations of triangular algebras
    Cheung, WS
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 299 - 310
  • [33] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Bruno L. M. Ferreira
    Ajda Fošner
    Gabriela C. Moraes
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2779 - 2788
  • [34] Lie σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2966 - 2983
  • [35] Derivations of triangular Banach algebras
    Forrest, BE
    Marcoux, LW
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (02) : 441 - 462
  • [36] Jordan *-Derivations on C*-Algebras and JC*-Algebras
    An, Jong Su
    Cui, Jianlian
    Park, Choonkil
    ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [37] A note on Jordan derivations of triangular rings
    Ajda Fošner
    Wu Jing
    Aequationes mathematicae, 2020, 94 : 277 - 285
  • [38] A note on Jordan derivations of triangular rings
    Fosner, Ajda
    Jing, Wu
    AEQUATIONES MATHEMATICAE, 2020, 94 (02) : 277 - 285
  • [39] Jordan derivations and antiderivations on triangular matrices
    Benkovic, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 235 - 244
  • [40] Additive derivations and Jordan derivations on algebras of unbounded operators
    Timmermann, W
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (04): : 717 - 733