Jordan σ-derivations of triangular algebras

被引:11
|
作者
Benkovic, Dominik [1 ]
机构
[1] Univ Maribor, FNM, Dept Math & Comp Sci, SLO-2000 Maribor, Slovenia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 02期
关键词
Jordan sigma-derivation; sigma-derivation; derivation; triangular algebra; MATRIX-RINGS; AUTOMORPHISMS;
D O I
10.1080/03081087.2015.1027646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of describing the form Jordan sigma-derivations of a triangular algebra A. The main result states that every Jordan sigma-derivation Delta of A is of the form Delta = d + delta, where d is a sigma-derivation of A and delta is a special mapping of A. We search for sufficient conditions on a triangular algebra, such that delta = 0. In particular, any Jordan sigma-derivation of a nest algebra T (N) is a sigma-derivation and any Jordan sigma-derivation of an upper triangular matrix algebra T-n (A), where A is a commutative unital algebra, is a sigma-derivation.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条