Jordan σ-derivations of triangular algebras

被引:11
|
作者
Benkovic, Dominik [1 ]
机构
[1] Univ Maribor, FNM, Dept Math & Comp Sci, SLO-2000 Maribor, Slovenia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 02期
关键词
Jordan sigma-derivation; sigma-derivation; derivation; triangular algebra; MATRIX-RINGS; AUTOMORPHISMS;
D O I
10.1080/03081087.2015.1027646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of describing the form Jordan sigma-derivations of a triangular algebra A. The main result states that every Jordan sigma-derivation Delta of A is of the form Delta = d + delta, where d is a sigma-derivation of A and delta is a special mapping of A. We search for sufficient conditions on a triangular algebra, such that delta = 0. In particular, any Jordan sigma-derivation of a nest algebra T (N) is a sigma-derivation and any Jordan sigma-derivation of an upper triangular matrix algebra T-n (A), where A is a commutative unital algebra, is a sigma-derivation.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [1] Jordan derivations of triangular algebras
    Zhang, Jian-Hua
    Yu, Wei-Yan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 251 - 255
  • [2] A note on Jordan σ-derivations of triangular algebras
    Wang, Yu
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 639 - 644
  • [3] Jordan generalized derivations on triangular algebras
    Li, Yanbo
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 841 - 849
  • [4] Jordan Higher Derivations of Triangular Algebras
    Yang, Aili
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (01): : 68 - 73
  • [5] Jordan higher derivations on triangular algebras
    Xiao, Zhankui
    Wei, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2615 - 2622
  • [6] Nonlinear Jordan Higher Derivations of Triangular Algebras
    Fu Wen-lian
    Xiao Zhan-kui
    Du Xian-kun
    Communications in Mathematical Research, 2015, 31 (02) : 119 - 130
  • [7] Jordan (α, β)-derivations on triangular algebras and related mappings
    Han, Dong
    Wei, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 259 - 284
  • [8] Jordan {g,h}-derivations on triangular algebras
    Kong, Liang
    Zhang, Jianhua
    OPEN MATHEMATICS, 2020, 18 : 894 - 901
  • [9] Lie (Jordan) derivations of arbitrary triangular algebras
    Wang, Yu
    AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1221 - 1229
  • [10] Lie (Jordan) derivations of arbitrary triangular algebras
    Yu Wang
    Aequationes mathematicae, 2019, 93 : 1221 - 1229