On some aspects of multivariate polynomial interpolation

被引:1
|
作者
Le Méhauté, A [1 ]
机构
[1] Univ Nantes, Fac Sci & Tech, Dept Math, F-44322 Nantes 03, France
关键词
Hermite interpolation; multivariate interpolation; Lagrange formula; Newton formula; Aitken-type algorithm; Abel interpolation;
D O I
10.1023/A:1018985606661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present some aspects of multivariate Hermite polynomial interpolation. We do not focus on algebraic considerations, combinatoric and geometric aspects, but on explicitation of formulas for uniform and non-uniform bivariate interpolation and some higher dimensional problems. The concepts of similar and equivalent interpolation schemes are introduced and some differential aspects related to them are also investigated.
引用
收藏
页码:311 / 333
页数:23
相关论文
共 50 条
  • [41] SOLVABILITY OF SOME MULTIVARIATE INTERPOLATION PROBLEMS
    JIA, RQ
    SHARMA, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 421 : 73 - 81
  • [42] RMVPIA: a new algorithm for computing the Lagrange multivariate polynomial interpolation
    Errachid, M.
    Essanhaji, A.
    Messaoudi, A.
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1507 - 1534
  • [44] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Francesco Dell’Accio
    Filomena Di Tommaso
    Najoua Siar
    Marco Vianello
    BIT Numerical Mathematics, 2022, 62 : 773 - 801
  • [45] Multivariate polynomial interpolation: conjectures concerning GC-sets
    Carl de Boor
    Numerical Algorithms, 2007, 45 : 113 - 125
  • [46] Polynomial interpolation, ideals and approximation order of multivariate refinable functions
    Sauer, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) : 3335 - 3347
  • [47] On Lagrange multivariate interpolation problem in generalized degree polynomial spaces
    Semian, Corina
    Simian, Dana
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 455 - +
  • [48] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    TANG Min
    LI Bingyu
    ZENG Zhenbing
    JournalofSystemsScience&Complexity, 2018, 31 (02) : 552 - 568
  • [49] On the Sauer-Xu formula for the error in multivariate polynomial interpolation
    DeBoor, C
    MATHEMATICS OF COMPUTATION, 1996, 65 (215) : 1231 - 1234
  • [50] Numerical differentiation on scattered data through multivariate polynomial interpolation
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Vianello, Marco
    BIT NUMERICAL MATHEMATICS, 2022, 62 (03) : 773 - 801