On some aspects of multivariate polynomial interpolation

被引:1
|
作者
Le Méhauté, A [1 ]
机构
[1] Univ Nantes, Fac Sci & Tech, Dept Math, F-44322 Nantes 03, France
关键词
Hermite interpolation; multivariate interpolation; Lagrange formula; Newton formula; Aitken-type algorithm; Abel interpolation;
D O I
10.1023/A:1018985606661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present some aspects of multivariate Hermite polynomial interpolation. We do not focus on algebraic considerations, combinatoric and geometric aspects, but on explicitation of formulas for uniform and non-uniform bivariate interpolation and some higher dimensional problems. The concepts of similar and equivalent interpolation schemes are introduced and some differential aspects related to them are also investigated.
引用
收藏
页码:311 / 333
页数:23
相关论文
共 50 条
  • [31] APPROXIMATING OPTIMAL POINT CONFIGURATIONS FOR MULTIVARIATE POLYNOMIAL INTERPOLATION
    Van Barel, Marc
    Humet, Matthias
    Sorber, Laurent
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 42 : 41 - 63
  • [32] Multivariate polynomial interpolation on Lissajous-Chebyshev nodes
    Dencker, Peter
    Erb, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2017, 219 : 15 - 45
  • [33] Improved error bound for multivariate Chebyshev polynomial interpolation
    Glau, Kathrin
    Mahlstedt, Mirco
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2302 - 2314
  • [34] Unisolvency for multivariate polynomial interpolation in Coatmelec configurations of nodes
    Angel Garcia-March, Miguel
    Gimenez, Fernando
    Villatoro, Francisco R.
    Perez, Jezabel
    Fernandez de Cordoba, Pedro
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7427 - 7431
  • [35] Approximating optimal point configurations for multivariate polynomial interpolation
    Van Barel, Marc
    Humet, Matthias
    Sorber, Laurent
    1600, Kent State University (42): : 41 - 63
  • [36] DIMENSIONAL REDUCTION FOR MULTIVARIATE LAGRANGE POLYNOMIAL INTERPOLATION PROBLEMS
    Errachid M.
    Essanhaji A.
    Messaoudi A.A.
    Electronic Transactions on Numerical Analysis, 2024, 60 : 123 - 135
  • [37] Evaluation and interpolation over multivariate skew polynomial rings
    Martinez-Penas, Umberto
    Kschischang, Frank R.
    JOURNAL OF ALGEBRA, 2019, 525 : 111 - 139
  • [38] Lagrange Multivariate Polynomial Interpolation: A Random Algorithmic Approach
    Essanhaji, A.
    Errachid, M.
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [39] Multivariate polynomial interpolation using even and odd polynomials
    J. M. Carnicer
    C. Godés
    BIT Numerical Mathematics, 2018, 58 : 27 - 49
  • [40] COMPUTATIONAL ASPECTS OF POLYNOMIAL INTERPOLATION IN SEVERAL VARIABLES
    DEBOOR, C
    RON, A
    MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 705 - 727