Discretization errors in the spectrum of the Hermitian Wilson-Dirac operator

被引:25
|
作者
Sharpe, Stephen R. [1 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW D | 2006年 / 74卷 / 01期
关键词
D O I
10.1103/PhysRevD.74.014512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I study the leading effects of discretization errors on the low-energy part of the spectrum of the Hermitian Wilson-Dirac operator in infinite volume. The method generalizes that used to study the spectrum of the Dirac operator in the continuum, and uses partially quenched chiral perturbation theory for Wilson fermions. The leading-order corrections are proportional to a(2) (a being the lattice spacing). At this order, I find that the method works only for one choice of sign of one of the three low-energy constants describing discretization errors. If these constants have the relative magnitudes expected from large N-c arguments, then the method works if the theory has an Aoki phase for m similar to a(2), but fails if there is a first-order transition. In the former case, the dependence of the gap and the spectral density on m and a(2) are determined. In particular, the gap is found to vanish more quickly as m(pi)(2)-> 0 than in the continuum. This reduces the region where simulations are safe from fluctuations in the gap.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Microscopic Spectrum of the Wilson Dirac Operator
    Damgaard, P. H.
    Splittorff, K.
    Verbaarschot, J. J. M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [22] Low-lying eigenmodes of the Wilson-Dirac operator and correlations with topological objects
    Kusterer, DJ
    Hedditch, J
    Kamleh, W
    Leinweber, DB
    Williams, AG
    NUCLEAR PHYSICS B, 2002, 628 (1-2) : 253 - 269
  • [23] Eigenvalue Density of the Non-Hermitian Wilson Dirac Operator
    Kieburg, Mario
    Verbaarschot, Jacobus J. M.
    Zafeiropoulos, Savvas
    PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [24] Topological structure of the SU(3) vacuum and exceptional eigenmodes of the improved Wilson-Dirac operator
    Smith, D
    Simma, H
    Teper, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 558 - 560
  • [25] ADAPTIVE AGGREGATION-BASED DOMAIN DECOMPOSITION MULTIGRID FOR THE LATTICE WILSON-DIRAC OPERATOR
    Frommer, A.
    Kahl, K.
    Krieg, S.
    Leder, B.
    Rottmann, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1581 - A1608
  • [26] Quenched chiral artifacts for Wilson-Dirac fermions
    Bardeen, W
    Duncan, A
    Eichten, E
    Thacker, H
    PHYSICAL REVIEW D, 1999, 59 (01)
  • [27] Efficient computation of low-lying eigenmodes of non-Hermitian Wilson-Dirac type matrices
    Neff, H
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 1055 - 1057
  • [28] Calculations of the quark masses and smallest eigenvalues of Wilson-Dirac operator in domain-wall formalism
    Gadiyak, V
    Ji, XD
    Jung, CW
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2000, 549 : 554 - 557
  • [29] Spectrum of the Wilson Dirac operator at finite lattice spacings
    Akemann, G.
    Damgaard, P. H.
    Splittorff, K.
    Verbaarschot, J. J. M.
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [30] Scalable NUMA-Aware Wilson-Dirac on Supercomputers
    Tadonki, Claude
    2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2017, : 315 - 324