Eigenvalue Density of the Non-Hermitian Wilson Dirac Operator

被引:20
|
作者
Kieburg, Mario [1 ]
Verbaarschot, Jacobus J. M. [1 ]
Zafeiropoulos, Savvas [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
RANDOM-MATRIX THEORY; LIMIT; QCD;
D O I
10.1103/PhysRevLett.108.022001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the lattice spacing dependence of the eigenvalue density of the non-Hermitian Wilson Dirac operator in the epsilon domain. The starting point is the joint probability density of the corresponding random matrix theory. In addition to the density of the complex eigenvalues we also obtain the density of the real eigenvalues separately for positive and negative chiralities as well as an explicit analytical expression for the number of additional real modes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator
    Bergner, Georg
    Wuilloud, Jair
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (02) : 299 - 304
  • [2] Spectrum of the Hermitian Wilson Dirac operator
    Narayanan, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 86 - 91
  • [3] Non-Hermitian Dirac Cones
    Xue, Haoran
    Wang, Qiang
    Zhang, Baile
    Chong, Y. D.
    PHYSICAL REVIEW LETTERS, 2020, 124 (23)
  • [4] Individual eigenvalue distributions for the Wilson Dirac operator
    G. Akemann
    A. C. Ipsen
    Journal of High Energy Physics, 2012
  • [5] Individual eigenvalue distributions for the Wilson Dirac operator
    Akemann, G.
    Ipsen, A. C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [6] Density matrices and entropy operator for non-Hermitian quantum mechanics
    Bagarello, F.
    Gargano, F.
    Saluto, L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (02)
  • [7] Non-Hermitian impurities in Dirac systems
    Sukhachov, P. O.
    Balatsky, A., V
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [8] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [9] Tools for the eigenvalue distribution in a non-Hermitian setting
    Serra-Capizzano, Stefano
    Sesana, Debora
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 423 - 437
  • [10] New universality classes of the non-Hermitian Dirac operator in QCD-like theories
    Kanazawa, Takuya
    Wettig, Tilo
    PHYSICAL REVIEW D, 2021, 104 (01)