The Visual SuperTree: similarity-based multi-scale visualization

被引:2
|
作者
da Silva, Renato R. O. [1 ,7 ]
Paiva, Jose Gustavo S. [4 ]
Telles, Guilherme P. [5 ]
Zampieri, Carlos E. A. [1 ,6 ]
Rolli, Fabio P. [2 ]
Minghim, Rosane [3 ]
机构
[1] Univ Sao Paulo, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Comp Sci, Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, ICMC Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[4] Univ Fed Uberlandia, Uberlandia, MG, Brazil
[5] Univ Estadual Campinas, Campinas, SP, Brazil
[6] Fed Univ Grande Dourados, Dourados, MS, Brazil
[7] Univ Groningen, Groningen, Netherlands
来源
VISUAL COMPUTER | 2019年 / 35卷 / 6-8期
基金
巴西圣保罗研究基金会;
关键词
Similarity trees; Multi-dimensional data; Multi-scale visualization; Image and text visualization; PROJECTION TECHNIQUE; TREES;
D O I
10.1007/s00371-019-01696-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Similarity-based exploration of multi-dimensional data sets is a difficult task, in which most techniques do not perform well with large data sets, particularly in handling clutter that invariably happens as data sets grow larger. In this paper, we introduce the Visual SuperTree (VST), a method to build a multi-scale similarity tree that can deal with large data sets at interactive rates, maintaining most of the accuracy and the data organization capabilities of other available methods. The VST is built on top of a clustered multi-level configuration of the data that allows the user to quickly explore data sets by similarity. The method is shown to be useful for both unlabeled and labeled data, and it is capable of revealing external and internal cluster structures. We demonstrate its application on artificial and real data sets, showing additional advantages of the approach when exploring data that can be summarized meaningfully.
引用
收藏
页码:1067 / 1080
页数:14
相关论文
共 50 条
  • [41] A new methodology for quantifying the multi-scale similarity of images
    Dalla Costa, M.
    Bigerelle, M.
    Najjar, D.
    MICROELECTRONIC ENGINEERING, 2007, 84 (03) : 424 - 430
  • [42] Similarity-based large-scale distribution mapping of orchids
    Kalle Remm
    Liina Remm
    Biodiversity and Conservation, 2009, 18 : 1629 - 1647
  • [43] An interactive web-based tool for multi-scale physiological data visualization
    Oefinger, M
    Zong, W
    Krieger, M
    Mark, RG
    Computers in Cardiology 2004, Vol 31, 2004, 31 : 569 - 571
  • [44] Multi-scale visualization based on sketch interaction for massive surveillance video data
    Zhang, Zhengming
    Zuo, Ran
    Guo, Rui
    Li, Yanfeng
    Zhou, Ti
    Xue, Han
    Ma, Cuixia
    Wang, Hongan
    PERSONAL AND UBIQUITOUS COMPUTING, 2021, 25 (06) : 1027 - 1037
  • [45] Multi-scale visualization based on sketch interaction for massive surveillance video data
    Zhengming Zhang
    Ran Zuo
    Rui Guo
    Yanfeng Li
    Ti Zhou
    Han Xue
    Cuixia Ma
    Hongan Wang
    Personal and Ubiquitous Computing, 2021, 25 : 1027 - 1037
  • [46] Research of visual distance blur algorithm based on multi-scale overlay
    Xu, X. (xxy0906@szpt.edu.cn), 1600, Chinese Optical Society (34):
  • [47] Similarity-based Fisherfaces
    Delgado-Gomez, David
    Fagertun, Jens
    Ersboll, Bjarne
    Sukno, Federico M.
    Frangi, Alejandro F.
    PATTERN RECOGNITION LETTERS, 2009, 30 (12) : 1110 - 1116
  • [48] A UAV reconnaissance method based on visual saliency and multi-scale fusion
    Chen, Haipeng
    Liu, Yanfang
    Song, Yituo
    Chen, Yujun
    Chen, Jiayue
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [49] Research on Visual Anomaly Detection Based on Multi-scale Normalizing Flow
    Mao G.-J.
    Wu X.-Z.
    Xing S.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (03): : 640 - 648
  • [50] Multi-scale Color Features Based on Correlation Filter for Visual Tracking
    Wibowo, Suryo Adhi
    Lee, Hansoo
    Kim, Eun Kyeong
    Kim, Sungshin
    2017 INTERNATIONAL CONFERENCE ON SIGNALS AND SYSTEMS (ICSIGSYS), 2017, : 272 - 277