The Visual SuperTree: similarity-based multi-scale visualization

被引:2
|
作者
da Silva, Renato R. O. [1 ,7 ]
Paiva, Jose Gustavo S. [4 ]
Telles, Guilherme P. [5 ]
Zampieri, Carlos E. A. [1 ,6 ]
Rolli, Fabio P. [2 ]
Minghim, Rosane [3 ]
机构
[1] Univ Sao Paulo, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Comp Sci, Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, ICMC Inst Math & Comp Sci, Sao Carlos, SP, Brazil
[4] Univ Fed Uberlandia, Uberlandia, MG, Brazil
[5] Univ Estadual Campinas, Campinas, SP, Brazil
[6] Fed Univ Grande Dourados, Dourados, MS, Brazil
[7] Univ Groningen, Groningen, Netherlands
来源
VISUAL COMPUTER | 2019年 / 35卷 / 6-8期
基金
巴西圣保罗研究基金会;
关键词
Similarity trees; Multi-dimensional data; Multi-scale visualization; Image and text visualization; PROJECTION TECHNIQUE; TREES;
D O I
10.1007/s00371-019-01696-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Similarity-based exploration of multi-dimensional data sets is a difficult task, in which most techniques do not perform well with large data sets, particularly in handling clutter that invariably happens as data sets grow larger. In this paper, we introduce the Visual SuperTree (VST), a method to build a multi-scale similarity tree that can deal with large data sets at interactive rates, maintaining most of the accuracy and the data organization capabilities of other available methods. The VST is built on top of a clustered multi-level configuration of the data that allows the user to quickly explore data sets by similarity. The method is shown to be useful for both unlabeled and labeled data, and it is capable of revealing external and internal cluster structures. We demonstrate its application on artificial and real data sets, showing additional advantages of the approach when exploring data that can be summarized meaningfully.
引用
收藏
页码:1067 / 1080
页数:14
相关论文
共 50 条
  • [31] Similarity-based clustering of multifeature objects in visual working memory
    Son, Gaeun
    Chong, Sang Chul
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2023, 85 (07) : 2242 - 2256
  • [32] Semantic Similarity-based Visual Reasoning without Language Information
    Choi, ChangSu
    Lim, HyeonSeok
    Jang, Hayoung
    Park, Juhan
    Kim, Eunkyung
    Lim, KyungTae
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 107 - 111
  • [33] Similarity-based visualization of time series collections: An application to analysis of streamflows
    Alencar, A. B.
    Paulovich, F. V.
    Minghim, R.
    Andrade, M. G.
    Oliveira, M. C. R.
    PROCEEDINGS OF THE 12TH INTERNATIONAL INFORMATION VISUALISATION, 2008, : 280 - 286
  • [34] Similarity-based models of visual supervised learning and pattern classification
    Unzicker, A.
    Juettner, M.
    Rentschler, I.
    PERCEPTION, 1995, 24 : 95 - 95
  • [35] Similarity-based unification
    Formato, Ferrante
    Gerla, Giangiacomo
    Sessa, Maria I.
    Fundamenta Informaticae, 2000, 41 (04) : 393 - 414
  • [36] On Similarity-Based Unfolding
    Moreno, Gines
    Penabad, Jaime
    Antonio Riaza, Jose
    SCALABLE UNCERTAINTY MANAGEMENT (SUM 2017), 2017, 10564 : 420 - 426
  • [37] Similarity-based large-scale distribution mapping of orchids
    Remm, Kalle
    Remm, Liina
    BIODIVERSITY AND CONSERVATION, 2009, 18 (06) : 1629 - 1647
  • [38] Multi-scale Similarity Enhanced Guided Normal Filtering
    Zhao, Wenbo
    Liu, Xianming
    Wang, Shiqi
    Zhao, Debin
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 645 - 653
  • [39] Multi-scale structural similarity for image quality assessment
    Wang, Z
    Simoncelli, EP
    Bovik, AC
    CONFERENCE RECORD OF THE THIRTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2003, : 1398 - 1402
  • [40] Multi-Scale Similarity Aggregation for Dynamic Metric Learning
    Zhang, Dingyi
    Li, Yingming
    Zhang, Zhongfei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 125 - 134