A Study on the Design Procedure of Re-Configurable Convolutional Neural Network Engine for FPGA-Based Applications

被引:3
|
作者
Kumar, Pervesh [1 ]
Ali, Imran [1 ]
Kim, Dong-Gyun [1 ,2 ]
Byun, Sung-June [1 ,2 ]
Kim, Dong-Gyu [3 ]
Pu, Young-Gun [1 ,2 ]
Lee, Kang-Yoon [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16416, South Korea
[2] SKAIChips, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Artificial Intelligence, Suwon 16419, South Korea
关键词
deep neural network; field-programmable-gate-array (FPGA); re-synthesizable; RTL; hardware accelerator; PERFORMANCE; EFFICIENT;
D O I
10.3390/electronics11233883
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) have become a primary approach in the field of artificial intelligence (AI), with wide range of applications. The two computational phases for every neural network are; the training phase and the testing phase. Usually, testing is performed on high-processing hardware engines, however, the training part is still a challenge for low-power devices. There are several neural accelerators; such as graphics processing units and field-programmable-gate-arrays (FPGAs). From the design perspective, an efficient hardware engine at the register-transfer level and efficient CNN modeling at the TensorFlow level are mandatory for any type of application. Hence, we propose a comprehensive, and step-by-step design procedure for a re-configurable CNN engine. We used TensorFlow and Keras libraries for modeling in Python, whereas the register-transfer-level part was performed using Verilog. The proposed idea was synthesized, placed, and routed for 180 nm complementary metal-oxide semiconductor technology using synopsis design compiler tools. The proposed design layout occupies an area of 3.16 x 3.16 mm(2). A competitive accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology (MNIST) and Canadian Institute for Advanced Research (CIFAR-10) datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network
    Nakahara, Hiroki
    Sada, Youki
    Shimoda, Masayuki
    Sayama, Kouki
    Jinguji, Akira
    Sato, Shimpei
    2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 180 - 186
  • [32] FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization
    Gowda, Kavitha Malali Vishveshwarappa
    Madhavan, Sowmya
    Rinaldi, Stefano
    Divakarachari, Parameshachari Bidare
    Atmakur, Anitha
    ELECTRONICS, 2022, 11 (10)
  • [33] Design Space Exploration of FPGA-Based Deep Convolutional Neural Networks
    Motamedi, Mohammad
    Gysel, Philipp
    Akella, Venkatesh
    Ghiasi, Soheil
    2016 21ST ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2016, : 575 - 580
  • [34] Latency-Driven Design for FPGA-based Convolutional Neural Networks
    Venieris, Stylianos I.
    Bouganis, Christos-Savvas
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [35] An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications
    Li, Jixuan
    Un, Ka-Fai
    Yu, Wei-Han
    Mak, Pui-In
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (09) : 3143 - 3147
  • [36] DiaNet: An Efficient Multi-Grained Re-configurable Neural Network in Silicon
    Zhang, Renyuan
    Chen, Yan
    Nakada, Takashi
    Nakashima, Yasuhiko
    32ND IEEE INTERNATIONAL SYSTEM ON CHIP CONFERENCE (IEEE SOCC 2019), 2019, : 132 - 137
  • [37] An elastic neural network toward multi-grained re-configurable accelerator
    Wu, Man
    Chen, Yan
    Kan, Yirong
    Nomura, Takeshi
    Zhang, Renyuan
    Nakashima, Yasuhiko
    NEWCAS 2020 - 18th IEEE International New Circuits and Systems Conference, Proceedings, 2020, : 218 - 221
  • [38] A power-efficient and re-configurable analog artificial neural network classifier
    Mohamed, Ahmed Reda
    Qi, Liang
    Wang, Guoxing
    MICROELECTRONICS JOURNAL, 2021, 111
  • [39] Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network
    Cho, Mannhee
    Kim, Youngmin
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [40] A Review of FPGA-Based Custom Computing Architecture for Convolutional Neural Network Inference
    PENG Xiyuan
    YU Jinxiang
    YAO Bowen
    LIU Liansheng
    PENG Yu
    Chinese Journal of Electronics, 2021, 30 (01) : 1 - 17