A Study on the Design Procedure of Re-Configurable Convolutional Neural Network Engine for FPGA-Based Applications

被引:3
|
作者
Kumar, Pervesh [1 ]
Ali, Imran [1 ]
Kim, Dong-Gyun [1 ,2 ]
Byun, Sung-June [1 ,2 ]
Kim, Dong-Gyu [3 ]
Pu, Young-Gun [1 ,2 ]
Lee, Kang-Yoon [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16416, South Korea
[2] SKAIChips, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Artificial Intelligence, Suwon 16419, South Korea
关键词
deep neural network; field-programmable-gate-array (FPGA); re-synthesizable; RTL; hardware accelerator; PERFORMANCE; EFFICIENT;
D O I
10.3390/electronics11233883
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) have become a primary approach in the field of artificial intelligence (AI), with wide range of applications. The two computational phases for every neural network are; the training phase and the testing phase. Usually, testing is performed on high-processing hardware engines, however, the training part is still a challenge for low-power devices. There are several neural accelerators; such as graphics processing units and field-programmable-gate-arrays (FPGAs). From the design perspective, an efficient hardware engine at the register-transfer level and efficient CNN modeling at the TensorFlow level are mandatory for any type of application. Hence, we propose a comprehensive, and step-by-step design procedure for a re-configurable CNN engine. We used TensorFlow and Keras libraries for modeling in Python, whereas the register-transfer-level part was performed using Verilog. The proposed idea was synthesized, placed, and routed for 180 nm complementary metal-oxide semiconductor technology using synopsis design compiler tools. The proposed design layout occupies an area of 3.16 x 3.16 mm(2). A competitive accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology (MNIST) and Canadian Institute for Advanced Research (CIFAR-10) datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An FPGA-based re-configurable 24-bit 96kHz sigma-delta audio DAC
    Cheung, RCC
    Pun, KP
    Yuen, SCL
    Tsoi, KH
    Leong, PHW
    2003 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), PROCEEDINGS, 2003, : 110 - 117
  • [22] FPGA-Based Convolutional Neural Network Architecture with Reduced Parameter Requirements
    Hailesellasie, Muluken
    Hasan, Syed Rafay
    Khalid, Faiq
    Awwad, Falah
    Shafique, Muhammad
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [23] FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics
    Mazzetto, Lucas F. R.
    Castanho, Jose E. C.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 433 - 438
  • [24] A FPGA-based Accelerator of Convolutional Neural Network for Face Feature Extraction
    Ding, Ru
    Su, Guangda
    Bai, Guoqiang
    Xu, Wei
    Su, Nan
    Wu, Xingjun
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [25] FPGA-Based Unified Accelerator for Convolutional Neural Network and Vision Transformer
    Li T.
    Zhang F.
    Wang S.
    Cao W.
    Chen L.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (06): : 2663 - 2672
  • [26] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [27] An Efficient FPGA-Based Dilated and Transposed Convolutional Neural Network Accelerator
    Wu, Tsung-Hsi
    Shu, Chang
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (11) : 5178 - 5186
  • [28] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [29] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40
  • [30] Efficient FPGA-Based Convolutional Neural Network Implementation for Edge Computing
    Cuong, Pham-Quoc
    Thinh, Tran Ngoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (03) : 479 - 487