Palindromic Complexity of Trees

被引:5
|
作者
Brlek, Srecko [1 ]
Lafreniere, Nadia [1 ]
Provencal, Xavier [2 ]
机构
[1] Univ Quebec, Montreal, PQ H3C 3P8, Canada
[2] Univ Savoie, Chambery, France
关键词
Words; Trees; Language; Palindromic complexity; Sidon sets; EPISTURMIAN WORDS;
D O I
10.1007/978-3-319-21500-6_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider finite trees with edges labeled by letters on a finite alphabet Sigma. Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid Sigma*. The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 50 条
  • [31] On the complexity of labeled oriented trees
    Rosebrock, Stephan
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (01): : 11 - 18
  • [32] PALINDROMIC COMPLEXITY OF INFINITE WORDS ASSOCIATED WITH NON-SIMPLE PARRY NUMBERS
    Balkova, L'ubomira
    Masakova, Zuzana
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2009, 43 (01): : 145 - 163
  • [33] On the complexity of packing rainbow spanning trees
    Berczi, Kristof
    Csaji, Gergely
    Kiraly, Tamas
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [34] Parameterized complexity of multicut in weighted trees
    Galby, Esther
    Marx, Daniel
    Schepper, Philipp
    Sharma, Roohani
    Tale, Prafullkumar
    THEORETICAL COMPUTER SCIENCE, 2023, 978
  • [35] Complexity of the Packing Coloring Problem for Trees
    Fiala, Jiri
    Golovach, Petr A.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 134 - +
  • [36] On the complexity of drawing trees nicely: corrigendum
    Thorsten Akkerman
    Christoph Buchheim
    Michael Jünger
    Daniel Teske
    Acta Informatica, 2004, 40 : 603 - 607
  • [37] Complexity of the packing coloring problem for trees
    Fiala, Jiri
    Golovach, Petr A.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (07) : 771 - 778
  • [38] Complexity of decision trees for boolean functions
    Freivalds, R
    Miyakawa, M
    Rosenberg, IG
    33RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2003, : 253 - 255
  • [39] Structural Complexity of Random Binary Trees
    Kieffer, J. C.
    Yang, E-H.
    Szpankowski, W.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 635 - +
  • [40] On the Parameterized Complexity of Contraction to Generalization of Trees
    Akanksha Agarwal
    Saket Saurabh
    Prafullkumar Tale
    Theory of Computing Systems, 2019, 63 : 587 - 614