Structural Complexity of Random Binary Trees

被引:20
|
作者
Kieffer, J. C. [1 ]
Yang, E-H. [2 ]
Szpankowski, W. [3 ]
机构
[1] Univ Minnesota, ECE Dept, Minneapolis, MN 55455 USA
[2] Univ Waterloo, ECE Dept, Waterloo, ON, Canada
[3] Purdue Univ, Dept Comp Sci, W Lafayette, IN USA
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4 | 2009年
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/ISIT.2009.5205704
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For each positive integer n, let T-n be a random rooted full binary tree having 2n-1 vertices. We can view H(T-n), the entropy of T-n, as a measure of the structural complexity of tree T-n in the sense that approximately H(T-n) bits suffice to construct T-n. We analyze some random binary tree sequences (T-n : n = 1, 2,...) for which the normalized entropies H(T-n)/n converge to a limit as n -> infinity, as well as some other sequences (T-n) in which the normalized entropies fail to converge.
引用
收藏
页码:635 / +
页数:2
相关论文
共 50 条