Subset sums over Galois rings

被引:3
|
作者
Ding, Yuchen [1 ]
Zhou, Haiyan [2 ,3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Galois rings; Subset sums; Finite fields; ERROR DISTANCE;
D O I
10.1016/j.jnt.2019.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and R = GR(p(2), p(2r)) be a Galois Ring of characteristic p(2) with cardinality p(2r). For a subset D of R, let N-D(n, b) = #{S subset of D vertical bar Sigma(x is an element of s) x = b and vertical bar S vertical bar = n} and R(k) = {y is an element of R vertical bar y = x(k) for some x is an element of R} We give the asymptotic formula of N-D (n, b) for D = R(k) \ {0}. From which we deduce that any element in R is the sum of n different k-th power under sufficient condition. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 169
页数:22
相关论文
共 50 条
  • [31] Inversive pseudorandom numbers over Galois rings
    Sole, Patrick
    Zinoviev, Dmitrii
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) : 458 - 467
  • [33] Cardinal rank metric codes over Galois rings
    Epelde, Markel
    Rua, Ignacio F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [34] Additive conjucyclic codes over a class of Galois rings
    Habibul Islam
    Dipak Kumar Bhunia
    Journal of Applied Mathematics and Computing, 2024, 70 : 235 - 250
  • [35] Schur rings over a Galois ring of odd characteristic
    Evdokimov, Sergei
    Ponomarenko, Ilya
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 827 - 841
  • [36] Comatrix Corings and Galois Comodules over Firm Rings
    J. Gómez-Torrecillas
    J. Vercruysse
    Algebras and Representation Theory, 2007, 10 : 271 - 306
  • [37] VALUE SETS OF DICKSON POLYNOMIALS OVER GALOIS RINGS
    BREMSER, PS
    GOMEZCALDERON, J
    JOURNAL OF NUMBER THEORY, 1991, 38 (02) : 240 - 250
  • [38] An Expansion for the Coordinates of the Trace Function over Galois Rings
    P. Vijay Kumar
    Tor Helleseth
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 353 - 361
  • [39] Subset sums of quadratic residues over finite fields
    Wang, Weiqiong
    Wang, Li-Ping
    Zhou, Haiyan
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 106 - 122
  • [40] Grobner bases and alternant codes over Galois rings
    Byrne, E
    Fitzpatrick, P
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 448 - 448