Subset sums over Galois rings

被引:3
|
作者
Ding, Yuchen [1 ]
Zhou, Haiyan [2 ,3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Galois rings; Subset sums; Finite fields; ERROR DISTANCE;
D O I
10.1016/j.jnt.2019.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and R = GR(p(2), p(2r)) be a Galois Ring of characteristic p(2) with cardinality p(2r). For a subset D of R, let N-D(n, b) = #{S subset of D vertical bar Sigma(x is an element of s) x = b and vertical bar S vertical bar = n} and R(k) = {y is an element of R vertical bar y = x(k) for some x is an element of R} We give the asymptotic formula of N-D (n, b) for D = R(k) \ {0}. From which we deduce that any element in R is the sum of n different k-th power under sufficient condition. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 169
页数:22
相关论文
共 50 条