The q-exponential family in statistical physics

被引:1
|
作者
Naudts, Jan [1 ]
机构
[1] Univ Antwerp, Dept Nat Kunde, B-2610 Antwerp, Belgium
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2009年 / 7卷 / 03期
关键词
q-exponential family; deformed logarithm; variational principle; q-Gaussian; microcanonical ensemble; MAXIMUM-ENTROPY; INFORMATION; DISTRIBUTIONS; TEMPERATURE;
D O I
10.2478/s11534-008-0150-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The notion of a generalized exponential family is considered in the restricted context of non-extensive statistical physics. Examples are given of models belonging to this family. In particular, the q-Gaussians are discussed and it is shown that the configurational probability distributions of the micro-canonical ensemble belong to the q-exponential family.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 50 条
  • [31] A multiple q-exponential differential operational identity
    Zhiguo Liu
    Acta Mathematica Scientia, 2023, 43 : 2449 - 2470
  • [32] The uncertainty measure for q-exponential distribution function
    Ou CongJie
    El Kaabouchi, Aziz
    Wang, QiuPing Alexandre
    Chen JinCan
    CHINESE SCIENCE BULLETIN, 2013, 58 (13): : 1524 - 1528
  • [33] A multiple q-exponential differential operational identity
    Liu, Zhiguo
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2449 - 2470
  • [34] Random networks with q-exponential degree distribution
    Sampaio Filho, Cesar I. N.
    Bastos, Marcio M.
    Herrmann, Hans J.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [35] Two generalized q-exponential operators and their applications
    Nadia Na Li
    Wei Tan
    Advances in Difference Equations, 2016
  • [36] Evidence of q-exponential statistics in Greek seismicity
    Antonopoulos, Chris G.
    Michas, George
    Vallianatos, Filippos
    Bountis, Tassos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 : 71 - 77
  • [37] Another addition theorem for the q-exponential function
    Suslov, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : L375 - L380
  • [38] Two generalized q-exponential operators and their applications
    Li, Nadia Na
    Tan, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 14
  • [39] New representations of π and Dirac delta using the nonextensive-statistical-mechanics q-exponential function
    Jauregui, M.
    Tsallis, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [40] A STUDY ON q-SPECIAL NUMBERS AND POLYNOMIALS WITH q-EXPONENTIAL DISTRIBUTION
    Kang, Jung Yoog
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 541 - 553