The q-exponential family in statistical physics

被引:1
|
作者
Naudts, Jan [1 ]
机构
[1] Univ Antwerp, Dept Nat Kunde, B-2610 Antwerp, Belgium
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2009年 / 7卷 / 03期
关键词
q-exponential family; deformed logarithm; variational principle; q-Gaussian; microcanonical ensemble; MAXIMUM-ENTROPY; INFORMATION; DISTRIBUTIONS; TEMPERATURE;
D O I
10.2478/s11534-008-0150-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The notion of a generalized exponential family is considered in the restricted context of non-extensive statistical physics. Examples are given of models belonging to this family. In particular, the q-Gaussians are discussed and it is shown that the configurational probability distributions of the micro-canonical ensemble belong to the q-exponential family.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 50 条
  • [21] The Tschakaloff Function and q-exponential function
    Bezivin, Jean-Paul
    ACTA ARITHMETICA, 2009, 139 (04) : 377 - 393
  • [22] The reversed q-exponential functional relation
    Fairlie, DB
    Wu, MY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15): : 5405 - 5409
  • [23] On asymptotics of the q-exponential and q-gamma functions
    Zhang, Ruiming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 522 - 529
  • [24] Information geometry on the curved q-exponential family with application to survival data analysis
    Zhang, Fode
    Ng, Hon Keung Tony
    Shi, Yimin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 : 788 - 802
  • [25] Improved q-exponential and q-trigonometric functions
    Cieslinski, Jan L.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2110 - 2114
  • [26] A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY
    刘治国
    ActaMathematicaScientia, 2023, 43 (06) : 2449 - 2470
  • [27] The uncertainty measure for q-exponential distribution function
    OU CongJie
    EL KAABOUCHI Aziz
    WANG QiuPing Alexandre
    CHEN JinCan
    Science Bulletin, 2013, (13) : 1524 - 1528
  • [28] The uncertainty measure for q-exponential distribution function
    OU CongJie
    EL KAABOUCHI Aziz
    WANG QiuPing Alexandre
    CHEN JinCan
    Chinese Science Bulletin, 2013, 58 (13) : 1524 - 1528
  • [29] Analytic properties of a special q-exponential function
    Ruffing, A
    Simon, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2003, (150): : 401 - 410
  • [30] Modelling train delays with q-exponential functions
    Briggs, Keith
    Beck, Christian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (02) : 498 - 504