On discrete Lorenz-like attractors

被引:17
|
作者
Gonchenko, Sergey [1 ,2 ]
Gonchenko, Alexander [1 ]
Kazakov, Alexey [2 ]
Samylina, Evgeniya [2 ]
机构
[1] Lobachevsky State Univ, Math Ctr, 23 Prospekt Gagarina, Nizhnii Novgorod 603950, Russia
[2] Natl Res Univ Higher Sch Econ, 25-12 Bolshaya Pecherskaya Ulitsa, Nizhnii Novgorod 603155, Russia
基金
俄罗斯科学基金会;
关键词
COMPUTER-ASSISTED PROOF; NONHOLONOMIC MODEL; NEWHOUSE REGIONS; SPIRAL CHAOS; SYSTEMS; DYNAMICS; DIFFEOMORPHISMS; BIFURCATIONS; HYPERCHAOS; EXISTENCE;
D O I
10.1063/5.0037621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study geometrical and dynamical properties of the so-called discrete Lorenz-like attractors. We show that such robustly chaotic (pseudohyperbolic) attractors can appear as a result of universal bifurcation scenarios, for which we give a phenomenological description and demonstrate certain examples of their implementation in one-parameter families of three-dimensional Henon-like maps. We pay special attention to such scenarios that can lead to period-2 Lorenz-like attractors. These attractors have very interesting dynamical properties and we show that their crises can lead, in turn, to the emergence of discrete Lorenz shape attractors of new types.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Stability and Hopf bifurcation of a Lorenz-like system
    Wu, Ranchao
    Fang, Tianbao
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 335 - 343
  • [42] A Lorenz-like model for the horizontal convection flow
    Bucchignani, E
    Georgescu, A
    Mansutti, D
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2003, 38 (05) : 629 - 644
  • [43] Controlling and Synchronization of a New Lorenz-like System
    Yao, Qiguo
    Su, Yuxiang
    Li, Lili
    2018 7TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE (ICAMCS 2018), 2019, : 95 - 101
  • [44] Delay Feedback Control of the Lorenz-Like System
    Chen, Qin
    Gao, Jianguo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [45] Time Averages and Periodic Attractors at High Rayleigh Number for Lorenz-like Models (vol 33, 73, 2023 )
    Ovsyannikov, Ivan
    Rademacher, Jens D. M.
    Welter, Roland
    Lu, Bing-ying
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [46] BIFURCATION CONTROL FOR A CLASS OF LORENZ-LIKE SYSTEMS
    Yu, Pei
    Lu, Jinhu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2647 - 2664
  • [47] APPLIED SYMBOLIC DYNAMICS FOR THE LORENZ-LIKE MAP
    ZHENG, WM
    PHYSICAL REVIEW A, 1990, 42 (04): : 2076 - 2080
  • [48] Lyapunov dimension formulas for Lorenz-like systems
    Leonov, G. A.
    DOKLADY MATHEMATICS, 2016, 93 (03) : 304 - 306
  • [49] Dynamics of a new Lorenz-like chaotic system
    Liu, Yongjian
    Yang, Qigui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2563 - 2572
  • [50] Lyapunov dimension formulas for Lorenz-like systems
    G. A. Leonov
    Doklady Mathematics, 2016, 93 : 304 - 306