首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Time Averages and Periodic Attractors at High Rayleigh Number for Lorenz-like Models (vol 33, 73, 2023 )
被引:0
|
作者
:
Ovsyannikov, Ivan
论文数:
0
引用数:
0
h-index:
0
机构:
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
Ovsyannikov, Ivan
[
1
]
Rademacher, Jens D. M.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
Rademacher, Jens D. M.
[
2
]
Welter, Roland
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
Welter, Roland
[
2
]
Lu, Bing-ying
论文数:
0
引用数:
0
h-index:
0
机构:
Int Sch Adv Studies SISSA, Bonomea 265, I-34136 Trieste, Italy
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
Lu, Bing-ying
[
3
]
机构
:
[1]
Constructor Univ, Sch Sci, Campus Ring 1, D-28759 Bremen, Germany
[2]
Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[3]
Int Sch Adv Studies SISSA, Bonomea 265, I-34136 Trieste, Italy
来源
:
JOURNAL OF NONLINEAR SCIENCE
|
2023年
/ 33卷
/ 05期
基金
:
俄罗斯科学基金会;
关键词
:
Bifurcation theory;
Hamiltonian limiting system;
Melnikov method;
D O I
:
10.1007/s00332-023-09951-9
中图分类号
:
O29 [应用数学];
学科分类号
:
070104 ;
摘要
:
Revisiting the Lorenz ’63 equations in the regime of large of Rayleigh number, we study the occurrence of periodic solutions and quantify corresponding time averages of selected quantities. Perturbing from the integrable limit of infinite ρ , we provide a full proof of existence and stability of symmetric periodic orbits, which confirms previous partial results. Based on this, we expand time averages in terms of elliptic integrals with focus on the much studied average ‘transport,’ which is the mode reduced excess heat transport of the convection problem that gave rise to the Lorenz equations. We find a hysteresis loop between the periodic attractors and the nonzero equilibria of the Lorenz equations. These have been proven to maximize transport, and we show that the transport takes arbitrarily small values in the family of periodic attractors. In particular, when the nonzero equilibria are unstable, we quantify the difference between maximal and typically realized values of transport. We illustrate these results by numerical simulations and show how they transfer to various extended Lorenz models. © 2023, The Author(s).
引用
收藏
页数:1
相关论文
共 1 条
[1]
Time Averages and Periodic Attractors at High Rayleigh Number for Lorenz-like Models
Ivan Ovsyannikov
论文数:
0
引用数:
0
h-index:
0
机构:
Constructor University,School of Science
Ivan Ovsyannikov
Jens D. M. Rademacher
论文数:
0
引用数:
0
h-index:
0
机构:
Constructor University,School of Science
Jens D. M. Rademacher
Roland Welter
论文数:
0
引用数:
0
h-index:
0
机构:
Constructor University,School of Science
Roland Welter
Bing-ying Lu
论文数:
0
引用数:
0
h-index:
0
机构:
Constructor University,School of Science
Bing-ying Lu
Journal of Nonlinear Science,
2023,
33
←
1
→