Linear scaling calculation of maximally localized Wannier functions with atomic basis set

被引:16
|
作者
Xiang, H. J. [1 ]
Li, Zhenyu [1 ]
Liang, W. Z. [1 ]
Yang, Jinlong [1 ]
Hou, J. G. [1 ]
Zhu, Qingshi [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 124卷 / 23期
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2207622
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed a linear scaling algorithm for calculating maximally localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals. These orbitals can be maximally localized in linear scaling by simple Jacobi sweeps. Our O(N) method is validated by applying it to water molecule and wurtzite ZnO. The linear scaling behavior of the new method is demonstrated by computing the MLWFs of boron nitride nanotubes. (c) 2006 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Computation of Maximally Localized Wannier Functions using a simultaneous diagonalization algorithm
    Gygi, F
    Fattebert, JL
    Schwegler, E
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 155 (01) : 1 - 6
  • [42] Closest Wannier functions to a given set of localized orbitals
    Ozaki, Taisuke
    PHYSICAL REVIEW B, 2024, 110 (12)
  • [43] Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions
    Kunes, Jan
    Arita, Ryotaro
    Wissgott, Philipp
    Toschi, Alessandro
    Ikeda, Hiroaki
    Held, Karsten
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (11) : 1888 - 1895
  • [44] Linear scaling electronic structure calculations with numerical atomic basis set
    Shang, Honghui
    Xiang, Hongjun
    Li, Zhenyu
    Yang, Jinlong
    INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2010, 29 (04) : 665 - 691
  • [45] An updated version of BOLTZWANN: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis
    Pizzi, Giovanni
    Volja, Dmitri
    Kozinsky, Boris
    Fornari, Marco
    Marzari, Nicola
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (08) : 2311 - 2312
  • [46] Maximally localized Wannier functions within the (L)APW plus LO method
    Tillack, Sebastian
    Gulans, Andris
    Draxl, Claudia
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [47] Maximally-localized Wannier functions in perovskites: Cubic BaTiO3
    Marzari, N
    Vanderbilt, D
    FIRST-PRINCIPLES CALCULATIONS FOR FERROELECTRICS, 1998, (436): : 146 - 155
  • [48] Maximally-localized Wannier functions for disordered systems: Application to amorphous silicon
    Silvestrelli, PL
    Marzari, N
    Vanderbilt, D
    Parrinello, M
    SOLID STATE COMMUNICATIONS, 1998, 107 (01) : 7 - 11
  • [49] Bloch Bundles, Marzari-Vanderbilt Functional and Maximally Localized Wannier Functions
    Panati, Gianluca
    Pisante, Adriano
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 835 - 875
  • [50] Variational method for the generation of localized Wannier functions on the basis of Bloch functions
    Smirnov, VP
    Usvyat, DE
    PHYSICAL REVIEW B, 2001, 64 (24)