Variational method for the generation of localized Wannier functions on the basis of Bloch functions

被引:28
|
作者
Smirnov, VP [1 ]
Usvyat, DE [1 ]
机构
[1] Inst Fine Mech & Opt, St Petersburg 197101, Russia
关键词
D O I
10.1103/PhysRevB.64.245108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple and universal variational method for constructing localized Wannier functions from Bloch functions is proposed. The variational procedure is preceded by a symmetry analysis based on the induced representation theory and succeeded by a suitable orthogonalization procedure. The reliability of the method is demonstrated by computations of localized displacements in a one-dimensional diatomic lattice and it germanium lattice, of localized electronic states in a one-dimensional Kronig-Penney model, for the tipper valence bands of Si and MgO crystals.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] WANNIER FUNCTIONS AND PHASES OF BLOCH FUNCTIONS
    FERREIRA, LG
    PARADA, NJ
    PHYSICAL REVIEW B, 1970, 2 (06): : 1614 - &
  • [2] LOCALIZED WANNIER FUNCTIONS
    MOREIRA, JAM
    PARADA, NJ
    SOLID STATE COMMUNICATIONS, 1975, 16 (05) : 561 - 562
  • [3] PROPERTIES OF THE BLOCH AND WANNIER FUNCTIONS
    BULYANITSA, DS
    SVETLOV, YE
    SOVIET PHYSICS-SOLID STATE, 1962, 4 (05): : 981 - 985
  • [4] MODIFIED METHOD OF VARIATIONAL CALCULATION OF WANNIER FUNCTIONS
    MODRAK, P
    WOJNECKI, R
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (21): : 4011 - 4023
  • [5] LOCALIZED BASIS FOR EFFECTIVE LATTICE HAMILTONIANS - LATTICE WANNIER FUNCTIONS
    RABE, KM
    WAGHMARE, UV
    PHYSICAL REVIEW B, 1995, 52 (18): : 13236 - 13246
  • [6] VARIATIONAL LOCALIZATION OF WANNIER FUNCTIONS
    KERTESZ, M
    BICZO, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1973, 60 (01): : 249 - 254
  • [7] BLOCH AND WANNIER FUNCTIONS IN MOMENTUM SPACE
    CALAIS, JL
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1988, 53 (09) : 1890 - 1901
  • [8] Selectively localized Wannier functions
    Wang, Runzhi
    Lazar, Emanuel A.
    Park, Hyowon
    Millis, Andrew J.
    Marianetti, Chris A.
    PHYSICAL REVIEW B, 2014, 90 (16):
  • [9] Bloch Bundles, Marzari-Vanderbilt Functional and Maximally Localized Wannier Functions
    Panati, Gianluca
    Pisante, Adriano
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 835 - 875
  • [10] Bloch Bundles, Marzari-Vanderbilt Functional and Maximally Localized Wannier Functions
    Gianluca Panati
    Adriano Pisante
    Communications in Mathematical Physics, 2013, 322 : 835 - 875