Foldable Triangulations of Lattice Polygons

被引:1
|
作者
Joswig, Michael [1 ]
Ziegler, Guenter M. [2 ]
机构
[1] Tech Univ Berlin, Math Inst, MA 6 2, D-10623 Berlin, Germany
[2] Free Univ Berlin, Math Inst, D-14195 Berlin, Germany
来源
AMERICAN MATHEMATICAL MONTHLY | 2014年 / 121卷 / 08期
基金
欧洲研究理事会;
关键词
D O I
10.4169/amer.math.monthly.121.08.706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple formula for the signature of a foldable triangulation of a lattice polygon in terms of its boundary. This yields lower bounds on the number of real roots of certain systems of polynomial equations known as "Wronski systems."
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [31] Minimal length maximal green sequences and triangulations of polygons
    E. Cormier
    P. Dillery
    J. Resh
    K. Serhiyenko
    J. Whelan
    Journal of Algebraic Combinatorics, 2016, 44 : 905 - 930
  • [32] NONCROSSING LATTICE POLYGONS
    RUSHBROOKE, GS
    EVE, J
    JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1333 - 1334
  • [33] POLYGONS ON THE HONEYCOMB LATTICE
    ENTING, IG
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1371 - 1384
  • [34] CONVEX LATTICE POLYGONS
    WILLS, JM
    COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (02) : 188 - 194
  • [35] Entropy of unimodular lattice triangulations
    Knauf, Johannes F.
    Krueger, Benedikt
    Mecke, Klaus
    EPL, 2015, 109 (04)
  • [36] Ehrhart series and lattice triangulations
    Payne, Sam
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (03) : 365 - 376
  • [37] Ehrhart Series and Lattice Triangulations
    Sam Payne
    Discrete & Computational Geometry, 2008, 40 : 365 - 376
  • [38] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877
  • [39] Lattice polygons with two interior lattice points
    X. Wei
    R. Ding
    Mathematical Notes, 2012, 91 : 868 - 877
  • [40] ON THE AREA OF SQUARE LATTICE POLYGONS
    ENTING, IG
    GUTTMANN, AJ
    JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) : 475 - 484