Foldable Triangulations of Lattice Polygons

被引:1
|
作者
Joswig, Michael [1 ]
Ziegler, Guenter M. [2 ]
机构
[1] Tech Univ Berlin, Math Inst, MA 6 2, D-10623 Berlin, Germany
[2] Free Univ Berlin, Math Inst, D-14195 Berlin, Germany
来源
AMERICAN MATHEMATICAL MONTHLY | 2014年 / 121卷 / 08期
基金
欧洲研究理事会;
关键词
D O I
10.4169/amer.math.monthly.121.08.706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple formula for the signature of a foldable triangulation of a lattice polygon in terms of its boundary. This yields lower bounds on the number of real roots of certain systems of polynomial equations known as "Wronski systems."
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [21] On Hamiltonian triangulations in simple polygons - (Extended abstract)
    Narasimhan, G
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 321 - 330
  • [22] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    ALGORITHMICA, 1994, 12 (01) : 54 - 68
  • [23] Upper bound on dilation of triangulations of cyclic polygons
    Amarnadh, Narayanasetty
    Mitra, Pinaki
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 1, 2006, 3980 : 1 - 9
  • [24] COUNTING THIN AND BUSHY TRIANGULATIONS OF CONVEX POLYGONS
    CHATTOPADHYAY, S
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 139 - 144
  • [25] Finding equal-diameter triangulations in polygons
    Bezdek, Andras
    Bisztriczky, Ted
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2015, 56 (02): : 541 - 549
  • [26] Optimal higher order Delaunay triangulations of polygons
    Silveira, Rodrigo I.
    van Kreveld, Marc
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (08): : 803 - 813
  • [27] Counting triangulations of almost-convex polygons
    Hurtado, F
    Noy, M
    ARS COMBINATORIA, 1997, 45 : 169 - 179
  • [28] Optimal higher order delaunay triangulations of polygons
    Silveira, Rodrigo I.
    van Kreveld, Marc
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 133 - 145
  • [29] Minimal length maximal green sequences and triangulations of polygons
    Cormier, E.
    Dillery, P.
    Resh, J.
    Serhiyenko, K.
    Whelan, J.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 905 - 930
  • [30] Counting triangulations of some classes of subdivided convex polygons
    Asinowski, Andrei
    Krattenthaler, Christian
    Mansour, Toufik
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 92 - 114