Two-Step Molecular Beam Epitaxy Growth of Bismuth Telluride Nanoplate Thin Film with Enhanced Thermoelectric Properties

被引:9
|
作者
Wang, Zhichong [1 ,2 ]
Zhang, Xiangpeng [1 ,2 ]
Zeng, Zhigang [1 ,2 ]
Zhang, Ziqiang [2 ,3 ]
Hu, Zhiyu [1 ,2 ,4 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst NanoMicroEnergy, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
[4] Shanghai Jiao Tong Univ, Res Inst Micronano Sci & Technol, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
BI/BISB SUPERLATTICE NANOWIRES; SOLVOTHERMAL SYNTHESIS; NANOSHEETS; PERFORMANCE; MERIT;
D O I
10.1149/2.0041408ssl
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bi2Te3 thin film composed of single-crystal nanoplates was fabricated on Si substrate by a modified two-step molecular beam epitaxy (MBE) method. The possible growth mechanism was suggested based on the scanning electron microscopy observations. Its thermoelectric properties were obtained at room-temperature with electrical conductivity (313.07 S center dot cm(-1)) and Seebeck coefficient (-163.44 mu V center dot K-1) respectively enhanced by 74.80% and 71.70% than the reference sample prepared by ordinary MBE method. (C) 2014 The Electrochemical Society. [DOI: 10.1149/2.0041408ssl] All rights reserved.
引用
收藏
页码:P99 / P101
页数:3
相关论文
共 50 条
  • [21] Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films
    Takashiri, Masayuki
    Imai, Kazuo
    Uyama, Masato
    Hagino, Harutoshi
    Tanaka, Saburo
    Miyazaki, Koji
    Nishi, Yoshitake
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 612 : 98 - 102
  • [22] Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy
    Zhang, XH
    Liu, YC
    Wang, XH
    Chen, SJ
    Wang, GR
    Zhang, JY
    Lu, YM
    Shen, DZ
    Fan, XW
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (19) : 3035 - 3042
  • [23] Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation
    Wada, Kodai
    Tomita, Koji
    Takashiri, Masayuki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (06)
  • [24] Strained lattice organic thin film growth by molecular beam epitaxy
    Nakayama, T
    Tanaka, S
    Aoki, SY
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1996, 276 : 267 - 271
  • [25] Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy
    Keen, B.
    Makin, R.
    Stampe, P. A.
    Kennedy, R. J.
    Sallis, S.
    Piper, L. J.
    McCombe, B.
    Durbin, S. M.
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (04) : 914 - 920
  • [26] Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy
    B. Keen
    R. Makin
    P. A. Stampe
    R. J. Kennedy
    S. Sallis
    L. J. Piper
    B. McCombe
    S. M. Durbin
    Journal of Electronic Materials, 2014, 43 : 914 - 920
  • [27] Thermoelectric properties of electrodeposited bismuth telluride thin films by thermal annealing and homogeneous electron beam irradiation
    Takemori, D.
    Okuhata, M.
    Takashiri, M.
    GENERAL STUDENT POSTER SESSION, 2017, 75 (52): : 123 - 131
  • [28] Growth and properties of AlSbBi thin films by molecular beam epitaxy
    Zhang, Xiaolei
    Zhang, Yanchao
    Yue, Li
    Liang, Hao
    Chi, Chaodan
    Wu, Yufeng
    Ou, Xin
    Wang, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 801 : 239 - 242
  • [29] Investigations on morphology and thermoelectric transport properties of Cu plus ion implanted bismuth telluride thin film
    Sinduja, M.
    Amirthapandian, S.
    Masarrat, Anha
    Krishnan, R.
    Srivastava, S. K.
    Kandasami, Asokan
    THIN SOLID FILMS, 2020, 697
  • [30] Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film
    Bhattarai, Niraj
    Forbes, Andrew W.
    Dulal, Rajendra P.
    Pegg, Ian L.
    Philip, John
    MRS COMMUNICATIONS, 2020, 10 (02) : 272 - 277