Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method

被引:17
|
作者
Fedorov, Dmitri G. [1 ]
Brekhov, Anton [2 ]
Mironov, Vladimir [2 ]
Alexeev, Yuri [3 ,4 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CDFMat, Cent 2,Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
[2] Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia
[3] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Computat Sci Div, Argonne, IL 60439 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2019年 / 123卷 / 29期
基金
俄罗斯基础研究基金会;
关键词
ENERGY DECOMPOSITION ANALYSIS; POISSON-BOLTZMANN EQUATION; SOLVENT INTERACTIONS; CHEMISTRY; BINDING; HF; ACCURATE;
D O I
10.1021/acs.jpca.9b04936
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A solvent screening model for the molecular electrostatic potential is developed for the fragment molecular orbital method combined with the polarizable continuum model at the Hartree-Fock and density functional theory levels. The accuracy of the generated potentials is established in comparison to calculations without fragmentation. Solvent effects upon the molecular electrostatic potential and electron density of solute are discussed. The method is applied to two proteins: chignolin (PDB: 1UAO) and ovine prostaglandin H(2) synthase-1 (1EQG).
引用
收藏
页码:6281 / 6290
页数:10
相关论文
共 50 条
  • [41] Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Alexeev, Yuri
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (04): : 282 - 288
  • [42] A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing H/D isotope effects in large molecules
    Ishimoto, T
    Tachikawa, M
    Nagashima, U
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (01):
  • [43] Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems
    Nebgen, Ben
    Prezhdo, Oleg V.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (36): : 7205 - 7212
  • [44] Molecular orbital of fragment molecular orbital method with Sakurai-Sugiura method on grid computing environment
    Nagashima, Umpei
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Ishimoto, Takayoshi
    Sakurai, Tetsuya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 21 - 21
  • [45] THE ELECTROSTATIC POTENTIAL IN THE SEMIEMPIRICAL MOLECULAR-ORBITAL APPROXIMATION
    CUMMINS, PL
    GREADY, JE
    CHEMICAL PHYSICS LETTERS, 1994, 225 (1-3) : 11 - 17
  • [46] Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Schmidt, Michael W.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Nakamura, Shinichiro
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (41): : 9762 - 9771
  • [47] Geometry Optimizations of Open-Shell Systems with the Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Fedorov, Dmitri G.
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (20): : 4965 - 4974
  • [48] Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems
    Komeiji, Yuto
    Mochizuki, Yuji
    Nakano, Tatsuya
    Fedorov, Dmitri G.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 898 (1-3): : 2 - 7
  • [49] Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) : 4801 - 4812
  • [50] Time-dependent density functional theory with the multilayer fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2007, 444 (4-6) : 346 - 350