Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method

被引:59
|
作者
Fedorov, Dmitri G. [1 ]
Alexeev, Yuri [2 ]
Kitaura, Kazuo [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] Inst Food Res, Colney NR4 7UA, Norfolk, England
[3] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
基金
英国生物技术与生命科学研究理事会;
关键词
ENERGY; BINDING; PROTEIN; MODEL; ACCURATE; QM/MM;
D O I
10.1021/jz1016894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient formulation of the fragment molecular orbital method is introduced based on dividing the system into frozen and polarizable domains. The former is computed once taking into account the many-body polarization of the whole system, while the latter is recalculated for each step of a geometry optimization. We performed ligand docking and calibrated the method on the complexes of the Trp-cage miniprotein construct (PDB: 1L2Y) with neutral and charged ligands and applied it to optimize a partially solvated structure of prostaglandin containing the polarizable and frozen domains respectively. The optimization took 32 h on six dual CPU quad-core 2.83 GHz Xeon nodes. Our method requires no fitted parameters and allows optimizations of large systems based solely on quantum mechanics.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [1] Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (49): : 9794 - 9804
  • [2] Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization
    Ishikawa, Takeshi
    Yamamoto, Norifumi
    Kuwata, Kazuo
    CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) : 149 - 154
  • [3] The fragment molecular orbital method for geometry optimizations of polypeptides and proteins
    Fedorov, Dmitri G.
    Ishida, Toyokazu
    Uebayasi, Masami
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (14): : 2722 - 2732
  • [4] Calculations of large molecular systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [5] Fragment molecular orbital method: an approximate computational method for large molecules
    Kitaura, K
    Ikeo, E
    Asada, T
    Nakano, T
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 1999, 313 (3-4) : 701 - 706
  • [6] Geometry Optimizations of Open-Shell Systems with the Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Fedorov, Dmitri G.
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (20): : 4965 - 4974
  • [7] Effective Fragment Molecular Orbital Method: A Merger of the Effective Fragment Potential and Fragment Molecular Orbital Methods
    Steinmann, Casper
    Fedorov, Dmitri G.
    Jensen, Jan H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8705 - 8712
  • [8] Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems
    Fujita, Takatoshi
    Mochizuki, Yuji
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (15): : 3886 - 3898
  • [9] Large-scale molecular orbitals based on fragment molecular orbital method solved by projection method
    Inadomi, Y
    Umeda, H
    Watanabe, T
    Sakurai, T
    Nagashima, U
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U793 - U793
  • [10] Extending the power of quantum chemistry to large systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (30): : 6904 - 6914