Fabrication of Graphene Embedded LiFePO4 Using a Catalyst Assisted Self Assembly Method as a Cathode Material for High Power Lithium-Ion Batteries

被引:66
|
作者
Kim, WonKeun [1 ]
Ryu, WonHee [1 ]
Han, DongWook [1 ]
Lim, SungJin [1 ]
Eom, JiYong [2 ]
Kwon, HyukSang [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[2] Korea Automot Technol Inst, Automot Mat Convergence & Syst R&D Div, Clean & Energy Mat R&D Ctr, Cheonan Si 330912, Chungnam, South Korea
关键词
LiFePO4; graphene; catalyst assisted self assembly; cathode; lithium-ion battery; NANOSTRUCTURED LIFEPO4; PERFORMANCE; NANOMATERIALS; CAPACITY; STORAGE;
D O I
10.1021/am405335k
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have designed a unique microstructure of graphene embedded LiFePO4 by a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. The stable amide bonds between LiFePO4 and graphene were formed by the catalyst assisted self assembly. High conductive graphene provides a fast electron transfer path, and many pores inside the structure facilitate the lithium-ion diffusion. The graphene embedded LiFePO4 fabricated by the novel method shows enhanced cycling performance and rate-capability compared with that of carbon coated LiFePO4 as a cathode material for high power lithium-ion batteries.
引用
收藏
页码:4731 / 4736
页数:6
相关论文
共 50 条
  • [1] Synthesis, characterization and electrochemical performances of LiFePO4/graphene cathode material for high power lithium-ion batteries
    Shang, Weili
    Kong, Lingyong
    Ji, Xuewen
    SOLID STATE SCIENCES, 2014, 38 : 79 - 84
  • [2] A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries
    Liu, Haowen
    Yang, Hanmin
    Li, Jinlin
    ELECTROCHIMICA ACTA, 2010, 55 (05) : 1626 - 1629
  • [3] Advances in new cathode material LiFePO4 for lithium-ion batteries
    Zhang, Yong
    Huo, Qing-yuan
    Du, Pei-pei
    Wang, Li-zhen
    Zhang, Ai-qin
    Song, Yan-hua
    Lv, Yan
    Li, Guang-yin
    SYNTHETIC METALS, 2012, 162 (13-14) : 1315 - 1326
  • [4] Development and challenges of LiFePO4 cathode material for lithium-ion batteries
    Yuan, Li-Xia
    Wang, Zhao-Hui
    Zhang, Wu-Xing
    Hu, Xian-Luo
    Chen, Ji-Tao
    Huang, Yun-Hui
    Goodenough, John B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 269 - 284
  • [5] Graphene modified LiFePO4 cathode materials for high power lithium ion batteries
    Zhou, Xufeng
    Wang, Feng
    Zhu, Yimei
    Liu, Zhaoping
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (10) : 3353 - 3358
  • [6] Facile synthesis of nanocrystalline LiFePO4/graphene composite as cathode material for high power lithium ion batteries
    Mo, Runwei
    Lei, Zhengyu
    Rooney, David
    Sun, Kening
    ELECTROCHIMICA ACTA, 2014, 130 : 594 - 599
  • [7] STRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF LiFePO4 AS CATHODE MATERIAL FOR LITHIUM-ION BATTERIES
    Smits, J.
    Kucinskis, G.
    Bajars, G.
    Kleperis, J.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2011, 48 (02) : 27 - 31
  • [8] Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries
    Gao, Fei
    Tang, Zhiyuan
    ELECTROCHIMICA ACTA, 2008, 53 (15) : 5071 - 5075
  • [9] Synthesis and modification of nanocrystalline LiFePO4 as a cathode material for lithium-ion batteries
    Li, Lingfang
    Han, Shaochang
    Fan, Changlin
    Bai, Yongmei
    Zhang, Kehe
    MATERIALS LETTERS, 2013, 108 : 156 - 159
  • [10] A carbon–LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries
    Jianguo Ren
    Weihua Pu
    Xiangming He
    Changyin Jiang
    Chunrong Wan
    Ionics, 2011, 17 : 581 - 586