On the Cardinality of Unique Range Sets with Weight One

被引:2
|
作者
Chakraborty, B. [1 ]
Chakraborty, S. [2 ]
机构
[1] Ramakrishna Mission Vivekananda Centenary Coll, Khardaha, W Bengal, India
[2] Jadavpur Univ, Kolcata, W Bengal, India
关键词
D O I
10.1007/s11253-020-01849-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two meromorphic functions f and g are said to share a set S subset of C boolean OR[{infinity} with weight l is an element of N boolean OR[{0}boolean OR[{infinity} if E-f (S, l) = E-g(S, l), where E-f (S, l) = boolean OR(a is an element of S) ((z, t) is an element of C x N | f(z) = a with multiplicity p}, provided that t = p for p <= l and t = p + 1 for p > l. We improve and supplement the result by L. W. Liao and C. C. Yang [Indian J. Pure Appl. Math., 31, No. 4, 431-440 (2000)] by showing that there exists a finite set S with 13 elements such that E-f (S, 1) = E-g(S, 1) implies that f equivalent to g.
引用
收藏
页码:1164 / 1174
页数:11
相关论文
共 50 条
  • [1] On the Cardinality of Unique Range Sets with Weight One
    B. Chakraborty
    S. Chakraborty
    Ukrainian Mathematical Journal, 2020, 72 : 1164 - 1174
  • [2] Correction to: On the Cardinality of Unique Range Sets with Weight One
    B. Chakraborty
    S. Chakraborty
    Ukrainian Mathematical Journal, 2021, 72 : 1675 - 1675
  • [3] On the Cardinality of Unique Range Sets with Weight One (vol 72, pg 1164, 2020)
    Chakraborty, B.
    Chakraborty, S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (10) : 1675 - 1675
  • [4] On the cardinality of the unique range sets for meromorphic and entire functions
    Liao, LW
    Yang, CC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (04): : 431 - 440
  • [5] Correction to: On the Cardinality of a Reduced Unique Range Set
    B. Chakraborty
    Ukrainian Mathematical Journal, 2025, 76 (9) : 1605 - 1606
  • [6] On the Cardinality of a Reduced Unique-Range Set
    Chakraborty, B.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (11) : 1794 - 1806
  • [7] Meromorphic functions sharing unique range sets with one or two elements
    Chen, Jun-Fan
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 349 - 354
  • [8] Unique Range Sets - A Further Study
    Mallick, Sanjay
    FILOMAT, 2020, 34 (05) : 1499 - 1516
  • [9] SOME RESULTS ON THE UNIQUE RANGE SETS
    Chakraborty, Bikash
    Kamila, Jayanta
    Pal, Amit Kumar
    Saha, Sudip
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 741 - 760
  • [10] Unique range sets in positive characteristic
    Boutabaa, A
    Escassut, A
    Cherry, W
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 247 - 251