Unique range sets in positive characteristic

被引:0
|
作者
Boutabaa, A [1 ]
Escassut, A [1 ]
Cherry, W [1 ]
机构
[1] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give examples and non-examples of unique range sets for ultrametric entire functions in positive characteristic, in an algebraically closed complete ultrametric field. In particular, if n greater than or equal to 4, we show there exists a unique range set with n elements for the family of non-constant one variable polynomials in any characteristic. As far as a pure existence theorem goes, this is the best one can hope for, as there are no 3 point unique range sets in characteristic three. For all prime powers q = p(n) greater than or equal to 3, we construct an affinely rigid set of q elements which is not a unique range set for the non-constant one variable polynomials in characteristic p. All our results hold equally well for the family of non-constant one variable non-Archimedean entire functions.
引用
收藏
页码:247 / 251
页数:5
相关论文
共 50 条
  • [1] Unique range sets in positive characteristic
    Boutabaa, A
    Cherry, W
    Escassut, A
    ACTA ARITHMETICA, 2002, 103 (02) : 169 - 189
  • [2] Unique range sets and uniqueness polynomials in positive characteristic
    An, TTH
    Wang, JTY
    Wong, PM
    ACTA ARITHMETICA, 2003, 109 (03) : 259 - 280
  • [3] Unique range sets and uniqueness polynomials in positive characteristic II
    An, TTH
    Wang, JTY
    Wong, PM
    ACTA ARITHMETICA, 2005, 116 (02) : 115 - 143
  • [4] Unique range sets in positive characteristic (vol 103, pg 169, 2002)
    Boutabaa, A
    Cherry, W
    Escassut, A
    ACTA ARITHMETICA, 2002, 105 (03) : 303 - 303
  • [5] Unique range sets for non-Archimedean entire functions in positive characteristic fields
    An, TTH
    Wang, JTY
    Ultrametric Functional Analysis, 2005, 384 : 323 - 333
  • [6] Unique Range Sets - A Further Study
    Mallick, Sanjay
    FILOMAT, 2020, 34 (05) : 1499 - 1516
  • [7] SOME RESULTS ON THE UNIQUE RANGE SETS
    Chakraborty, Bikash
    Kamila, Jayanta
    Pal, Amit Kumar
    Saha, Sudip
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 741 - 760
  • [8] On Unique Range Sets for Meromorphic Functions
    方明亮
    郭辉
    数学进展, 1997, (01) : 77 - 78
  • [9] On the Cardinality of Unique Range Sets with Weight One
    Chakraborty, B.
    Chakraborty, S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1164 - 1174
  • [10] Unique range sets: a further study II
    Saha, Ripan
    Mallick, Sanjay
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3495 - 3520