On the Cardinality of Unique Range Sets with Weight One

被引:2
|
作者
Chakraborty, B. [1 ]
Chakraborty, S. [2 ]
机构
[1] Ramakrishna Mission Vivekananda Centenary Coll, Khardaha, W Bengal, India
[2] Jadavpur Univ, Kolcata, W Bengal, India
关键词
D O I
10.1007/s11253-020-01849-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two meromorphic functions f and g are said to share a set S subset of C boolean OR[{infinity} with weight l is an element of N boolean OR[{0}boolean OR[{infinity} if E-f (S, l) = E-g(S, l), where E-f (S, l) = boolean OR(a is an element of S) ((z, t) is an element of C x N | f(z) = a with multiplicity p}, provided that t = p for p <= l and t = p + 1 for p > l. We improve and supplement the result by L. W. Liao and C. C. Yang [Indian J. Pure Appl. Math., 31, No. 4, 431-440 (2000)] by showing that there exists a finite set S with 13 elements such that E-f (S, 1) = E-g(S, 1) implies that f equivalent to g.
引用
收藏
页码:1164 / 1174
页数:11
相关论文
共 50 条
  • [41] Some remarks on the genericity of unique range sets for meromorphic functions
    Khoai, HH
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 262 - 267
  • [42] Unique range sets and uniqueness polynomials in positive characteristic II
    An, TTH
    Wang, JTY
    Wong, PM
    ACTA ARITHMETICA, 2005, 116 (02) : 115 - 143
  • [43] INVESTIGATIONS ON UNIQUE RANGE SETS OF MEROMORPHIC FUNCTIONS IN AN ANGULAR DOMAIN
    Maity, Sayantan
    Banerjee, Abhijit
    MATHEMATICA BOHEMICA, 2023, 148 (04): : 603 - 615
  • [44] SOME FURTHER RESULTS ON THE UNIQUE RANGE SETS OF MEROMORPHIC FUNCTIONS
    Banerjee, Abhijit
    Majumder, Sujoy
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (04): : 189 - 200
  • [45] Uniqueness polynomials, unique range sets and other uniqueness theorems
    Wang, JTY
    Ultrametric Functional Analysis, 2005, 384 : 353 - 369
  • [46] ON UNIQUE RANGE SETS OF MEROMORPHIC FUNCTIONS IN C-m
    Bai, Xiao-Tian
    Han, Qi
    ARCHIVUM MATHEMATICUM, 2007, 43 (03): : 185 - 195
  • [47] Some remarks on the genericity of unique range sets for meromorphic functions
    Ha Huy Khoai
    Science in China Series A: Mathematics, 2005, 48 : 262 - 267
  • [48] On the Cardinality and Power Set of Fuzzy Sets and Multiple Sets
    Sanjitha, R.
    Baiju, T.
    S. Pai, Sandhya
    ADVANCES IN FUZZY SYSTEMS, 2024, 2024
  • [49] On the cardinality of unique range set for two minimum weights over a non-Archimedean field
    Chaithra, C. N.
    Naveenkumar, S. H.
    Jayarama, H. R.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (01): : 21 - 34
  • [50] Locally stable sets with minimum cardinality
    Cao, Hai-Qing
    Li, Mao-Sheng
    Zuo, Hui-Juan
    PHYSICAL REVIEW A, 2023, 108 (01)