Nonparametric Regression Based on Hierarchical Interaction Models

被引:45
|
作者
Kohler, Michael [1 ]
Krzyzak, Adam [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Curse of dimensionality; dimension reduction; interaction models; L-2; error; nonparametric regression; projection pursuit; rate of convergence; SINGLE-INDEX MODELS; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; CONVERGENCE; NETWORKS; RATES;
D O I
10.1109/TIT.2016.2634401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the so-called hierarchical interaction models, where we assume that the computation of the value of a function m : R-d -> R is done in several layers, where in each layer a function of at most d* inputs computed by the previous layer is evaluated. We investigate two different regression estimates based on polynomial splines and on neural networks, and show that if the regression function satisfies a hierarchical interaction model and all occurring functions in the model are smooth, the rate of convergence of these estimates depends on d* (and not on d). Hence, in this case, the estimates can achieve good rate of convergence even for large d, and are in this sense able to circumvent the so-called curse of dimensionality.
引用
收藏
页码:1620 / 1630
页数:11
相关论文
共 50 条
  • [41] A comparison of nonparametric priors in hierarchical mixture modelling for AFT regression
    Argiento, Raffaele
    Guglielmi, Alessandra
    Pievatolo, Antonio
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 3989 - 4005
  • [42] HIERARCHICAL INTERACTION MODELS
    EDWARDS, D
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1990, 52 (01): : 3 - 20
  • [43] Nonparametric regression with adaptive truncation via a convex hierarchical penalty
    Haris, Asad
    Shojaie, Ali
    Simon, Noah
    BIOMETRIKA, 2019, 106 (01) : 87 - 107
  • [44] Nonparametric binary regression models with spherical predictors based on the random forests kernel
    Qin, Xu
    Gao, Huiqun
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3031 - 3048
  • [45] Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models
    Tondel, Kristin
    Vik, Jon Olav
    Martens, Harald
    Indahl, Ulf G.
    Smith, Nicolas
    Omholt, Stig W.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 120 : 25 - 41
  • [46] High-Order Conditional Quantile Estimation Based on Nonparametric Models of Regression
    Martins-Filho, Carlos
    Yao, Feng
    Torero, Maximo
    ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 906 - 957
  • [47] Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences
    Liang, HY
    Jing, BY
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) : 227 - 245
  • [48] A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression
    Aydin, Dursun
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 730 - 734
  • [49] ON NONPARAMETRIC REGRESSION-ESTIMATORS BASED ON REGRESSION QUANTILES
    JANSSEN, P
    VERAVERBEKE, N
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (02) : 383 - 396
  • [50] Detection of Interaction Effects in a Nonparametric Concurrent Regression Model
    Pan, Rui
    Wang, Zhanfeng
    Wu, Yaohua
    ENTROPY, 2023, 25 (09)