Nonparametric Regression Based on Hierarchical Interaction Models

被引:45
|
作者
Kohler, Michael [1 ]
Krzyzak, Adam [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Curse of dimensionality; dimension reduction; interaction models; L-2; error; nonparametric regression; projection pursuit; rate of convergence; SINGLE-INDEX MODELS; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; CONVERGENCE; NETWORKS; RATES;
D O I
10.1109/TIT.2016.2634401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the so-called hierarchical interaction models, where we assume that the computation of the value of a function m : R-d -> R is done in several layers, where in each layer a function of at most d* inputs computed by the previous layer is evaluated. We investigate two different regression estimates based on polynomial splines and on neural networks, and show that if the regression function satisfies a hierarchical interaction model and all occurring functions in the model are smooth, the rate of convergence of these estimates depends on d* (and not on d). Hence, in this case, the estimates can achieve good rate of convergence even for large d, and are in this sense able to circumvent the so-called curse of dimensionality.
引用
收藏
页码:1620 / 1630
页数:11
相关论文
共 50 条
  • [31] On the performance of nonparametric specification tests in regression models
    Miles, D
    Mora, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (03) : 477 - 490
  • [32] Computed torque control with nonparametric regression models
    Nguyen-Tuong, Duy
    Seeger, Matthias
    Peters, Jan
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 212 - 217
  • [33] On consistency of wavelet estimator in nonparametric regression models
    Xuejun Wang
    Yi Wu
    Rui Wang
    Shuhe Hu
    Statistical Papers, 2021, 62 : 935 - 962
  • [34] BIAS REDUCTION FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION MODELS
    Cheng, Ming-Yen
    Huang, Tao
    Liu, Peng
    Peng, Heng
    STATISTICA SINICA, 2018, 28 (04) : 2749 - 2770
  • [35] On consistency of wavelet estimator in nonparametric regression models
    Wang, Xuejun
    Wu, Yi
    Wang, Rui
    Hu, Shuhe
    STATISTICAL PAPERS, 2021, 62 (02) : 935 - 962
  • [36] Estimation of GDP in Turkey by nonparametric regression models
    Aydin, Dursun
    6TH WSEAS INT CONF ON INSTRUMENTATION, MEASUREMENT, CIRCUITS & SYSTEMS/7TH WSEAS INT CONF ON ROBOTICS, CONTROL AND MANUFACTURING TECHNOLOGY, PROCEEDINGS, 2007, : 221 - +
  • [37] Asymptotically efficient estimates for nonparametric regression models
    Galtchouk, L
    Pergamenshchikov, S
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (08) : 852 - 860
  • [38] Adaptive estimators for nonparametric heteroscedastic regression models
    Brua, J. -Y.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (08) : 991 - 1002
  • [39] Approximate tolerance intervals for nonparametric regression models
    Guo, Yafan
    Young, Derek S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (01) : 212 - 239
  • [40] Smoothing spline nonlinear nonparametric regression models
    Ke, CL
    Wang, YD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1166 - 1175