Site percolation for a class of constrained honeycomb lattices

被引:2
|
作者
Bendisch, J [1 ]
Reimann, S
von Trotha, H
机构
[1] Fraunhofer Inst Algorithms & Sci Computat, D-53757 St Augustin, Germany
[2] Univ Bielefeld, Fac Phys Theoret Phys, Bielefeld, Germany
关键词
thresholds in 2D site percolation; class of constrained honeycomb lattices;
D O I
10.1016/S0378-4371(01)00611-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider site percolation in a class of correlated random media derived from randomly bi-colored triangular lattices. Media are constructed due to specific state-dependent local constraints. Constraints destroy stochastic independence of elementary events and have specific impact on site percolation thresholds. Further, a connection to critical concentrations of spontaneous magnetization in random 2D +/- J Ising models, at groundstates, is discussed. (C) 2002 Elsevier Science B.V.. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Site percolation threshold of composite square lattices and its agroecology applications
    Herrera, D. Rosales
    Velazquez-Castro, Jorge
    Tellez, A. Fernandez
    Lopez-Olguin, Jesus F.
    Ramirez, J. E.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [32] Randomized algorithms for statistical image analysis and site percolation on square lattices
    Langovoy, Mikhail
    Wittich, Olaf
    STATISTICA NEERLANDICA, 2013, 67 (03) : 337 - 353
  • [33] How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application
    Ren, Jingli
    Zhang, Liying
    Siegmund, Stefan
    SCIENTIFIC REPORTS, 2016, 6
  • [34] How Inhomogeneous Site Percolation Works on Bethe Lattices: Theory and Application
    Jingli Ren
    Liying Zhang
    Stefan Siegmund
    Scientific Reports, 6
  • [35] Beyond the percolation universality class: the vertex split model for tetravalent lattices
    Nachtrab, Susan
    Hoffmann, Matthias J. F.
    Kapfer, Sebastian C.
    Schroeder-Turk, Gerd E.
    Mecke, Klaus
    NEW JOURNAL OF PHYSICS, 2015, 17 : 043061
  • [36] Site percolation and random walks on d-dimensional Kagome lattices
    van der Marck, SC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15): : 3449 - 3460
  • [37] Honeycomb lattices with defects
    Spencer, Meryl A.
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [38] Percolation on hyperbolic lattices
    Baek, Seung Ki
    Minnhagen, Petter
    Kim, Beom Jun
    PHYSICAL REVIEW E, 2009, 79 (01)
  • [39] Percolation on Lieb lattices
    Oliveira, W. S.
    de Lima, J. Pimentel
    Costa, N. C.
    dos Santos, R. R.
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [40] PERCOLATION ON FRACTAL LATTICES
    HAVLIN, S
    BENAVRAHAM, D
    MOVSHOVITZ, D
    PHYSICAL REVIEW LETTERS, 1983, 51 (26) : 2347 - 2350