Site percolation threshold of composite square lattices and its agroecology applications

被引:0
|
作者
Herrera, D. Rosales [1 ]
Velazquez-Castro, Jorge [1 ]
Tellez, A. Fernandez [1 ]
Lopez-Olguin, Jesus F. [2 ,3 ]
Ramirez, J. E. [3 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisico Matemat, Apartado Postal 165, Puebla 72000, Puebla, Mexico
[2] Benemerita Univ Autonoma Puebla, Herbario & Jardin Bot Vicerrectoria Invest & Estud, Apartado Postal 165, Puebla 72000, Puebla, Mexico
[3] Benemerita Univ Autonoma Puebla, Ctr Agroecol, Inst Ciencias, Apartado Postal 165, Puebla 72000, Puebla, Mexico
关键词
Crystal lattices - Exponential functions - Percolation (computer storage) - Percolation (fluids);
D O I
10.1103/PhysRevE.109.014304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the percolation threshold of square lattices comprising a combination of sites with regular and extended neighborhoods. We found that the percolation threshold of these composed systems smoothly decreases with the fraction of sites with extended neighbors. This behavior can be well-fitted by a Tsallis q-Exponential function. We found a relation between the fitting parameters and the differences in the gyration radius among neighborhoods. We also compared the percolation threshold with the critical susceptibility of nearest and next -to-nearest neighbor monoculture plantations vulnerable to the spread of phytopathogen. Notably, the critical susceptibility in monoculture plantations can be described as a linear combination of two composite systems. These results allow the refinement of mathematical models of phytopathogen propagation in agroecology. In turn, this improvement facilitates the implementation of more efficient computational simulations of agricultural epidemiology that are instrumental in testing and formulating control strategies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SITE PERCOLATION-THRESHOLD FOR HONEYCOMB AND SQUARE LATTICES
    DJORDJEVIC, ZV
    STANLEY, HE
    MARGOLINA, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (08): : L405 - L412
  • [2] Site trimer percolation on square lattices
    Lebrecht, W.
    Vogel, E. E.
    Valdes, J. F.
    Ramirez-Pastor, A. J.
    Centres, P. M.
    Gonzalez, M. I.
    Nieto, F. D.
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [3] SPIRAL SITE PERCOLATION ON THE SQUARE AND TRIANGULAR LATTICES
    SANTRA, SB
    BOSE, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1105 - 1118
  • [4] Restoring site percolation on damaged square lattices
    Galam, S
    Malarz, K
    PHYSICAL REVIEW E, 2005, 72 (02)
  • [5] SITE PERCOLATION-THRESHOLD FOR SQUARE LATTICE
    GEBELE, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02): : L51 - L54
  • [6] PARTIALLY DIRECTED SITE PERCOLATION ON THE SQUARE AND TRIANGULAR LATTICES
    MARTIN, HO
    VANNIMENUS, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09): : 1475 - 1482
  • [7] Percolation of dimers on square lattices
    Lebrecht, W.
    Valdes, J. F.
    Vogel, E. E.
    Nieto, F.
    Ramirez-Pastor, A. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (01) : 149 - 156
  • [8] Randomized algorithms for statistical image analysis and site percolation on square lattices
    Langovoy, Mikhail
    Wittich, Olaf
    STATISTICA NEERLANDICA, 2013, 67 (03) : 337 - 353
  • [9] Pseudo-random-number generators and the square site percolation threshold
    Lee, Michael J.
    PHYSICAL REVIEW E, 2008, 78 (03)
  • [10] Site percolation in distorted square and simple cubic lattices with flexible number of neighbors
    Mitra, Sayantan
    Sensharma, Ankur
    PHYSICAL REVIEW E, 2023, 107 (06)