Site percolation threshold of composite square lattices and its agroecology applications

被引:0
|
作者
Herrera, D. Rosales [1 ]
Velazquez-Castro, Jorge [1 ]
Tellez, A. Fernandez [1 ]
Lopez-Olguin, Jesus F. [2 ,3 ]
Ramirez, J. E. [3 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisico Matemat, Apartado Postal 165, Puebla 72000, Puebla, Mexico
[2] Benemerita Univ Autonoma Puebla, Herbario & Jardin Bot Vicerrectoria Invest & Estud, Apartado Postal 165, Puebla 72000, Puebla, Mexico
[3] Benemerita Univ Autonoma Puebla, Ctr Agroecol, Inst Ciencias, Apartado Postal 165, Puebla 72000, Puebla, Mexico
关键词
Crystal lattices - Exponential functions - Percolation (computer storage) - Percolation (fluids);
D O I
10.1103/PhysRevE.109.014304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the percolation threshold of square lattices comprising a combination of sites with regular and extended neighborhoods. We found that the percolation threshold of these composed systems smoothly decreases with the fraction of sites with extended neighbors. This behavior can be well-fitted by a Tsallis q-Exponential function. We found a relation between the fitting parameters and the differences in the gyration radius among neighborhoods. We also compared the percolation threshold with the critical susceptibility of nearest and next -to-nearest neighbor monoculture plantations vulnerable to the spread of phytopathogen. Notably, the critical susceptibility in monoculture plantations can be described as a linear combination of two composite systems. These results allow the refinement of mathematical models of phytopathogen propagation in agroecology. In turn, this improvement facilitates the implementation of more efficient computational simulations of agricultural epidemiology that are instrumental in testing and formulating control strategies.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Percolation threshold of correlated two-dimensional lattices
    Mendelson, KS
    PHYSICAL REVIEW E, 1999, 60 (06): : 6496 - 6498
  • [42] KINETIC GROWTH WALKS AND TRAILS ON ORIENTED SQUARE LATTICES - HULL PERCOLATION AND PERCOLATION HULLS
    MANNA, SS
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15): : 3113 - 3122
  • [43] SERIES EXPANSIONS OF THE PERCOLATION PROBABILITY FOR DIRECTED SQUARE AND HONEYCOMB LATTICES
    JENSEN, I
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17): : 4813 - 4833
  • [44] Directed spiral site percolation on the square lattice
    Santra, SB
    EUROPEAN PHYSICAL JOURNAL B, 2003, 33 (01): : 75 - 82
  • [45] Site Percolation on a Disordered Triangulation of the Square Lattice
    Rolla, Leonardo T.
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 228 - 240
  • [46] Directed spiral site percolation on the square lattice
    S.B. Santra
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 33 : 75 - 82
  • [47] Bond percolation in ±J Ising square lattices diluted by frustration
    Vogel, EE
    Contreras, S
    Osorio, MA
    Cartes, J
    Nieto, F
    Ramirez-Pastor, AJ
    PHYSICAL REVIEW B, 1998, 58 (13): : 8475 - 8480
  • [48] A LOWER BOUND FOR PERCOLATION-THRESHOLD OF A SQUARE LATTICE
    ZUYEV, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (05): : 59 - 61
  • [49] SIZE DEPENDENCE OF PERCOLATION THRESHOLD OF SQUARE AND TRIANGULAR NETWORK
    ROUSSENQ, J
    CLERC, J
    GIRAUD, G
    GUYON, E
    OTTAVI, H
    JOURNAL DE PHYSIQUE LETTRES, 1976, 37 (05): : L99 - L101
  • [50] Site dilution study of a square lattice Heisenberg antiferromagnet with S=5/2 covering the percolation threshold
    Takeda, K
    Fujita, O
    Hitaka, M
    Mito, M
    Kawae, T
    Higuchi, Y
    Deguchi, H
    Muraoka, Y
    Zenmyo, K
    Kubo, H
    Tokita, M
    Yamagata, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3696 - 3703