Performance optimization of hygrothermal simulations - Parameter optimization of iterative solvers

被引:0
|
作者
Nicolai, Andreas [1 ]
Ruisinger, Ulrich [1 ]
机构
[1] Tech Univ Dresden, Inst Bauklimat, Fak Architektur, D-01062 Dresden, Germany
关键词
hygrothermal simulation; performance optimization; parameter optimization; iterative equation solvers; convergence factors;
D O I
10.1002/bapi.202000033
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Despite continuously enhanced computer hardware, running dynamic 3D hygrothermal simulations may still be a time-consuming process. The duration of simulations may be reduced by user-selected numeric parameters. However, the actual impact of parameters like maximum Krylov subspace, convergence coefficients etc. proves difficult to estimate. In the article different methods of reducing simulation speed are applied to two example cases. Starting with a grid sensitivity study the scaling of effort for different direct and iterative linear equation system solvers is discussed. Further, we investigate parameters influencing the iterative equation system solvers GMRES and BiCGStab in combination with ILU preconditioners. The tests are done with the software DELPHIN 6. The article concludes with recommendation for suitable initial parameter selection based on system size and a short methodology on how to optimize parameters based on collected solver metrics.
引用
收藏
页码:289 / 299
页数:10
相关论文
共 50 条
  • [1] Efficient use of iterative solvers in nested topology optimization
    Oded Amir
    Mathias Stolpe
    Ole Sigmund
    Structural and Multidisciplinary Optimization, 2010, 42 : 55 - 72
  • [2] STENCIL-AWARE GPU OPTIMIZATION OF ITERATIVE SOLVERS
    Lowell, Daniel
    Godwin, Jeswin
    Holewinski, Justin
    Karthik, Deepan
    Choudary, Chekuri
    Mametjanov, Azamat
    Norris, Boyana
    Sabin, Gerald
    Sadayappan, P.
    Sarich, Jason
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S209 - S228
  • [3] Efficient use of iterative solvers in nested topology optimization
    Amir, Oded
    Stolpe, Mathias
    Sigmund, Ole
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (01) : 55 - 72
  • [4] Calibration of Hygrothermal Simulations by the Help of a Generic Optimization Tool
    Freudenberg, P.
    Ruisinger, U.
    Stocker, E.
    11TH NORDIC SYMPOSIUM ON BUILDING PHYSICS (NSB2017), 2017, 132 : 405 - 410
  • [5] Parameter optimization in iterative learning control
    Owens, DH
    Feng, K
    INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (11) : 1059 - 1069
  • [6] A simple iterative approach to parameter optimization
    Zien, A
    Zimmer, R
    Lengauer, T
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) : 483 - 501
  • [7] Application Composition and Communication Optimization in Iterative Solvers using FPGAs
    Rafique, Abid
    Kapre, Nachiket
    Constantinides, George A.
    2013 IEEE 21ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2013, : 153 - 160
  • [8] Iterative solvers in forming process simulations
    van den Boogaard, AH
    Huetink, J
    Rietman, AD
    SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS, 1998, : 219 - 224
  • [9] OPTIMIZATION BY THE CONVERGENCE CONTROL PARAMETER IN ITERATIVE METHODS
    Turkyilmazoglu, Mustafa
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2024, 23 (02) : 105 - 116
  • [10] Hyper-parameter optimization for improving the performance of localization in an iterative ensemble smoother
    Luo, Xiaodong
    Cruz, William C.
    Zhang, Xin-Lei
    Xiao, Heng
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 231