Generating survival times with time-varying covariates using the Lambert W Function

被引:6
|
作者
Ngwa, Julius S. [1 ,2 ]
Cabral, Howard J. [1 ]
Cheng, Debbie M. [1 ]
Gagnon, David R. [1 ]
LaValley, Michael P. [1 ]
Cupples, L. Adrienne [1 ,3 ]
机构
[1] Boston Univ, Sch Publ Hlth, Dept Biostat, 801 Massachusetts Ave,CT 3rd Floor, Boston, MA 02118 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, 615 N Wolfe St E3009, Baltimore, MD 21205 USA
[3] NHLBI, Framingham Heart Study, Framingham, MA 01702 USA
基金
美国国家卫生研究院;
关键词
Longitudinal and survival data; Lambert W Function; Time-varying covariates; Two step approach; Linear Mixed effects model; REGRESSION-MODELS; COX REGRESSION; SIMULATION; LIFE;
D O I
10.1080/03610918.2019.1648822
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simulation studies provide an important statistical tool in evaluating survival methods, requiring an appropriate data-generating process to simulate data for an underlying statistical model. Many studies with time-to-event outcomes use the Cox proportional hazard model. While methods for simulating such data with time-invariant predictors have been described, methods for simulating data with time-varying covariates are sorely needed. Here, we describe an approach for generating data for the Cox proportional hazard model with time-varying covariates when event times follow an Exponential or Weibull distribution. For each distribution, we derive a closed-form expression to generate survival times and link the time-varying covariates with the hazard function. We consider a continuous time-varying covariate measured at regular intervals over time, as well as time-invariant covariates, in generating time-to-event data under a number of scenarios. Our results suggest this method can lead to simulation studies with reliable and robust estimation of the association parameter in Cox-Weibull and Cox-Exponential models.
引用
收藏
页码:135 / 153
页数:19
相关论文
共 50 条
  • [31] Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time-varying covariates
    Meng, Lixin
    Zhang, Jiwei
    Zhang, Xue
    Feng, Guozhong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (03) : 708 - 723
  • [32] Survival Analysis with Error-Prone Time-Varying Covariates: A Risk Set Calibration Approach
    Liao, Xiaomei
    Zucker, David M.
    Li, Yi
    Spiegelman, Donna
    BIOMETRICS, 2011, 67 (01) : 50 - 58
  • [33] Joint modeling of longitudinal and survival data with missing and left-censored time-varying covariates
    Chen, Qingxia
    May, Ryan C.
    Ibrahim, Joseph G.
    Chu, Haitao
    Cole, Stephen R.
    STATISTICS IN MEDICINE, 2014, 33 (26) : 4560 - 4576
  • [34] Deep Parametric Time-to-Event Regression with Time-Varying Covariates
    Nagpal, Chirag
    Jeanselme, Vincent
    Dubrawski, Artur
    SURVIVAL PREDICTION - ALGORITHMS, CHALLENGES AND APPLICATIONS, VOL 146, 2021, 146 : 184 - 193
  • [35] Generating Time-Varying Road Network Data Using Sparse Trajectories
    Eser, Elif
    Kocayusufoglu, Furkan
    Eravci, Bahaeddin
    Ferhatosmanoglu, Hakan
    Larriba-Pey, Josep L.
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 1118 - 1124
  • [36] Generating autonomous time-varying virtual cities
    Honda, M
    Mizuno, K
    Fukui, Y
    Nishihara, S
    2004 INTERNATIONAL CONFERENCE ON CYBERWORLDS, PROCEEDINGS, 2004, : 45 - 52
  • [37] Analysis of Multidimensional Time Delay Systems Using Lambert W Function
    Choudhary, Niraj
    Sivaramakrishnan, Janardhanan
    Kar, Indra Narayan
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (11):
  • [38] Bayesian Analysis of Extended Cox Model with Time-Varying Covariates Using Bootstrap Prior
    Olaniran, Oyebayo Ridwan
    Abdullah, Mohd Asrul Affendi
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (02) : 2 - 13
  • [39] Gamma detector dead time correction using Lambert W function
    Jan W. T. Heemskerk
    Michel Defrise
    EJNMMI Physics, 7
  • [40] Performance of growth mixture models in the presence of time-varying covariates
    Thierno M. O. Diallo
    Alexandre J. S. Morin
    HuiZhong Lu
    Behavior Research Methods, 2017, 49 : 1951 - 1965