Generating survival times with time-varying covariates using the Lambert W Function

被引:6
|
作者
Ngwa, Julius S. [1 ,2 ]
Cabral, Howard J. [1 ]
Cheng, Debbie M. [1 ]
Gagnon, David R. [1 ]
LaValley, Michael P. [1 ]
Cupples, L. Adrienne [1 ,3 ]
机构
[1] Boston Univ, Sch Publ Hlth, Dept Biostat, 801 Massachusetts Ave,CT 3rd Floor, Boston, MA 02118 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, 615 N Wolfe St E3009, Baltimore, MD 21205 USA
[3] NHLBI, Framingham Heart Study, Framingham, MA 01702 USA
基金
美国国家卫生研究院;
关键词
Longitudinal and survival data; Lambert W Function; Time-varying covariates; Two step approach; Linear Mixed effects model; REGRESSION-MODELS; COX REGRESSION; SIMULATION; LIFE;
D O I
10.1080/03610918.2019.1648822
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simulation studies provide an important statistical tool in evaluating survival methods, requiring an appropriate data-generating process to simulate data for an underlying statistical model. Many studies with time-to-event outcomes use the Cox proportional hazard model. While methods for simulating such data with time-invariant predictors have been described, methods for simulating data with time-varying covariates are sorely needed. Here, we describe an approach for generating data for the Cox proportional hazard model with time-varying covariates when event times follow an Exponential or Weibull distribution. For each distribution, we derive a closed-form expression to generate survival times and link the time-varying covariates with the hazard function. We consider a continuous time-varying covariate measured at regular intervals over time, as well as time-invariant covariates, in generating time-to-event data under a number of scenarios. Our results suggest this method can lead to simulation studies with reliable and robust estimation of the association parameter in Cox-Weibull and Cox-Exponential models.
引用
收藏
页码:135 / 153
页数:19
相关论文
共 50 条
  • [21] Estimation of Time-Varying Coherence Function Using Time-Varying Transfer Functions
    He Zhao
    Sheng Lu
    Rui Zou
    Kihwan Ju
    Ki H. Chon
    Annals of Biomedical Engineering, 2005, 33 : 1582 - 1594
  • [22] Comparing machine learning approaches to incorporate time-varying covariates in predicting cancer survival time
    Steve Cygu
    Hsien Seow
    Jonathan Dushoff
    Benjamin M. Bolker
    Scientific Reports, 13
  • [23] Discrete-time survival trees and forests with time-varying covariates: application to bankruptcy data
    Bou-Hamad, Imad
    Larocque, Denis
    Ben-Ameur, Hatem
    STATISTICAL MODELLING, 2011, 11 (05) : 429 - 446
  • [24] Cox Regression Models with Time-Varying Covariates Applied to Survival Success of Young Firms
    Anavatan, Aygul
    Karaoz, Murat
    Polat, Ozgur
    Uslu, Enes E.
    Kalyoncu, Huseyin
    JOURNAL OF ECONOMIC AND SOCIAL STUDIES, 2013, 3 (02): : 52 - 68
  • [25] Weibull Racing Survival Analysis with Competing Events, Left Truncation, and Time-Varying Covariates
    Zhang, Quan
    Xu, Yanxun
    Wang, Mei-Cheng
    Zhou, Mingyuan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [26] Flexible Treatment of Time-Varying Covariates with Time Unstructured Data
    McNeish, Daniel
    Matta, Tyler H.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (02) : 298 - 317
  • [27] Beyond baseline data: the use of time-varying covariates
    D'Agostino, Ralph B.
    JOURNAL OF HYPERTENSION, 2008, 26 (04) : 639 - 640
  • [28] Invited commentary:: Effect modification by time-varying covariates
    Robins, James M.
    Hernan, Miguel A.
    Rotnitzky, Andrea
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 166 (09) : 994 - 1002
  • [29] NONPARAMETRIC HAZARD ESTIMATION WITH TIME-VARYING DISCRETE COVARIATES
    LEUNG, SF
    WONG, WH
    JOURNAL OF ECONOMETRICS, 1990, 45 (03) : 309 - 330
  • [30] Time-varying covariates and coefficients in Cox regression models
    Zhang, Zhongheng
    Reinikainen, Jaakko
    Adeleke, Kazeem Adedayo
    Pieterse, Marcel E.
    Groothuis-Oudshoorn, Catharina G. M.
    ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (07)