A highly reliable die bonding approach for high power devices by low temperature pressureless sintering using a novel Cu nanoparticle paste

被引:7
|
作者
Huang, Hai-Jun [1 ,2 ]
Wu, Xue [1 ,2 ]
Zhou, Min-Bo [1 ,2 ]
Zhang, Xin-Ping [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Engn Technol R&D Ctr Elect Packagi, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu nanoparticle; presureless sintering; bimodal size distribution; shear strength; high power electronics; IN-SITU;
D O I
10.1109/ECTC32862.2020.00266
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel Cu nanoparticle (NP) paste with the capability of pressureless sintering at low temperature in nitrogen is developed using a type of easily synthesized Cu NPs. The feature of bimodal size distribution of Cu NPs can be inherited to the Cu NP paste, which facilitates the formation of dense as-sintered microstructure, mainly consisted of Cu bulks, in sintered joints. The optimization of the sintering process condition has been achieved by using Taguchi method, and so-obtained Cu paste joints show shear strength as high as 65.24 MPa. Moreover, the formulation of the solvent containing ethylene glycol (EG) and glycerol with an optimized weight ratio, which is employed for preparation of the Cu NP paste, has also been demonstrated to be crucial for the formation of Cu bulks in joints and so-induced superior bonding strength. Finally, the results of high temperature storage (HTS) tests of Cu paste joints after aging at 200 degrees C for 600 h show that there is a slight degradation of bonding strength of joints, mainly due to the generation of voids at the Cu-paste/Cu interface.
引用
收藏
页码:1697 / 1702
页数:6
相关论文
共 50 条
  • [21] Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste
    Li, Junjie
    Yu, Xing
    Shi, Tielin
    Cheng, Chaoliang
    Fan, Jinhu
    Cheng, Siyi
    Liao, Guanglan
    Tang, Zirong
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [22] Nano-joining Mechanisms and Joint Reliability of Die Attachment Using Bimodal-sized Cu Nanoparticle Paste Capable of Low-temperature Pressureless Sintering
    Huang H.
    Zhou M.
    Wu X.
    Zhang X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (02): : 58 - 65
  • [23] Sintering of Ag paste for power devices die attach on Cu surfaces
    Manikam, Vemal Raja
    Tolentino, Erik Nino
    2014 IEEE 16TH ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2014, : 94 - 98
  • [24] Die-bonding performance and mechanism based on the sintering of micro Ag paste for high power devices
    Takemasa, Tetsu
    Ueshima, Minoru
    Jiu, Jinting
    Suganuma, Katsuaki
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 377 - 380
  • [25] Low-temperature Cu-to-Cu electrode bonding by sintering Cu core-Ag shell nanoparticle paste
    Chung, Seok-Hwan
    Kim, Jong Tae
    Jeong, Sang Won
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [26] Low-Temperature Die Attachment by Pressureless Cu Sintering for Semiconductor Packaging
    Jingru Dai
    Yangang Wang
    Thomas Grant
    Muhmmad Morshed
    Journal of Electronic Materials, 2023, 52 : 7607 - 7613
  • [27] Low-Temperature Die Attachment by Pressureless Cu Sintering for Semiconductor Packaging
    Dai, Jingru
    Wang, Yangang
    Grant, Thomas
    Morshed, Muhmmad
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (11) : 7607 - 7613
  • [28] Pressureless Sintering Process of Ag Sinter Paste Bonding Ag Si Die on Bare Cu DBC Using Convection Reflow Oven in Nitrogen for Die Attach
    Fan, Guangyu
    Labarbera, Christine
    Lee, Ning-Cheng
    Boushie, Zachary
    Lockwood, Nicole
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 1338 - 1343
  • [29] Large-area Die Attachment and the Surface Finish Effect on Bonding Strength of Joints in High-power Electronics Using a Low-temperature Sinterable Cu Nanoparticle Paste
    Wang, Chun-Meng
    Hou, Bin
    Deng, Yun-Kai
    Zhou, Min-Bo
    Zhang, Xin-Ping
    2022 23RD INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2022,
  • [30] Sintering Bonding Process with Ag Nanoparticle Paste and Joint Properties in High Temperature Environment
    Yan, Jianfeng
    Zhang, Dongyue
    Zou, Guisheng
    Liu, Lei
    Bai, Hailin
    Wu, Aiping
    Zhou, Y. Norman
    JOURNAL OF NANOMATERIALS, 2016, 2016