Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes

被引:34
|
作者
Tang, Wenwei [1 ]
Li, Lei [2 ]
Wu, Lujun [1 ]
Gong, Jiemin [1 ]
Zeng, Xinping [2 ]
机构
[1] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[2] Tongji Univ, Sch Life Sci & Technol, Shanghai 200092, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 05期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
LAYER-BY-LAYER; DIRECT ELECTROCHEMISTRY; GOLD NANOPARTICLES; OXIDASE; FILM; IMMOBILIZATION; ENZYME;
D O I
10.1371/journal.pone.0095030
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced the distance between them and were propitious to fast direct electron transfer. Combining with good electrical conductivity of PTH and MWCNTs, the current response was enlarged. The sensor was a parallel multi-component reaction system (PMRS) and excellent electrocatalytic performance for glucose could be obtained without a mediator. The glucose sensor had a working voltage of -0.42 V, an optimum working temperature of 25 degrees C, an optimum working pH of 7.0, and the best percentage of polytetrafluoroethylene emulsion (PTFE) in the outer composite film was 2%. Under the optimised conditions, the biosensor displayed a high sensitivity of 2.80 mu A mM(-1) cm(-2) and a low detection limit of 5 mu M (S/N = 3), with a response time of less than 15 s and a linear range of 0.04 mM to 2.5 mM. Furthermore, the fabricated biosensor had a good selectivity, reproducibility, and long-term stability, indicating that the novel CTS+PTFE/GOx/MWCNTs/PTH composite is a promising material for immobilization of biomolecules and fabrication of third generation biosensors.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes (vol 9, e95030, 2014)
    Tang, W.
    Li, L.
    Wu, L.
    Gong, J.
    Zeng, X.
    PLOS ONE, 2015, 10 (03):
  • [2] Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes
    Ren, Jing
    Kang, Tian-Fang
    Xue, Rui
    Ge, Chao-Nan
    Cheng, Shui-Yuan
    MICROCHIMICA ACTA, 2011, 174 (3-4) : 303 - 309
  • [3] Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes
    Jing Ren
    Tian-Fang Kang
    Rui Xue
    Chao-Nan Ge
    Shui-Yuan Cheng
    Microchimica Acta, 2011, 174 : 303 - 309
  • [4] A norepinephrine biosensor based on a glassy carbon electrode modified with carbon nanotubes
    Mohammadi, Ali
    Moghaddam, Abdolmajid Bayandori
    Hosseini, Samanesadat
    Kazemzad, Mahmood
    Dinarvand, Rassoul
    ANALYTICAL METHODS, 2011, 3 (10) : 2406 - 2411
  • [5] Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode
    Lifei Chen
    Huaqing Xie
    Jing Li
    Journal of Solid State Electrochemistry, 2012, 16 : 3323 - 3329
  • [6] Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode
    Chen, Lifei
    Xie, Huaqing
    Li, Jing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) : 3323 - 3329
  • [7] A hydrogen peroxide biosensor with high stability based on gelatin-multiwalled carbon nanotubes modified glassy carbon electrode
    Wang, Yulin
    Li, Tianyu
    Zhang, Weijie
    Huang, Yaqin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (07) : 1981 - 1987
  • [8] A hydrogen peroxide biosensor with high stability based on gelatin-multiwalled carbon nanotubes modified glassy carbon electrode
    Yulin Wang
    Tianyu Li
    Weijie Zhang
    Yaqin Huang
    Journal of Solid State Electrochemistry, 2014, 18 : 1981 - 1987
  • [9] Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles
    Wang, Qingxia
    Zhang, Haili
    Wu, Yiwei
    Yu, Aimin
    MICROCHIMICA ACTA, 2012, 176 (3-4) : 279 - 285
  • [10] Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles
    Qingxia Wang
    Haili Zhang
    Yiwei Wu
    Aimin Yu
    Microchimica Acta, 2012, 176 : 279 - 285