Projectively equivalent metrics on the torus

被引:10
|
作者
Matveev, VS [1 ]
机构
[1] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
projectively equivalent metrics; geodesically equivalent metrics; integrable systems; Levi-Civita coordinates; quantum integrability; separation of variables;
D O I
10.1016/j.difgeo.2003.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Riemannian metrics g and (g) over bar on a closed connected manifold M-n have the same geodesics, and suppose the eigenvalues of one metric with respect to the other are different at least at one point. We show that then the first Betti number b(1) (M-n) is not greater than n, and that if there exists a point where the eigenvalues of one metric with respect to the other are not all different, then the first Betti number b(1) (M-n) is less than n. In particular, if M-n is covered by the torus T-n, then the eigenvalues of one metric with respect to the other are different at every point. This allows us to classify such metrics on the torus and to separate variables in the equation on the eigenvalues of the Laplacian of g. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 50 条
  • [41] Projectively induced rotation invariant Kahler metrics
    Salis, Filippo
    ARCHIV DER MATHEMATIK, 2017, 109 (03) : 285 - 292
  • [42] Riemannian metrics on locally projectively flat manifolds
    Loftin, JC
    AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (03) : 595 - 609
  • [43] Projectively Ricci-flat general (α, β)-metrics
    Sevim, Esra Sengelen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (06) : 1409 - 1419
  • [44] ON A CLASS OF LOCALLY PROJECTIVELY FLAT FINSLER METRICS
    Mo, X. H.
    Zhu, H. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 735 - 746
  • [45] On projectively related of two special classes of (α, β)-metrics
    Zohrehvand, M.
    Rezaii, M. M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (05) : 660 - 669
  • [46] ON A CLASS OF LOCALLY PROJECTIVELY FLAT GENERAL (α, β)-METRICS
    Mo, Xiaohuan
    Zhu, Hongmei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1293 - 1307
  • [47] PROJECTIVELY EQUIVALENT NOETHERIAN FILTRATIONS AND REES VALUATIONS
    Kamano, Damase
    Abdoulaye, Assane
    Akeke, Eric Dago
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 41 (02): : 147 - 176
  • [48] On a New Class of Projectively Flat Finsler Metrics
    Li, Ying
    Song, Wei-Dong
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (01): : 57 - 63
  • [49] Projectively flat Finsler metrics with orthogonal invariance
    Huang, Libing
    Mo, Xiaohuan
    ANNALES POLONICI MATHEMATICI, 2013, 107 (03) : 259 - 270
  • [50] ON CURVES AND SURFACES WITH PROJECTIVELY EQUIVALENT HYPERPLANE SECTIONS
    LVOVSKY, S
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (03): : 384 - 392